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Final Report, May 2001 
on 

Constitutive Theories for Swelling Porous Media 

Executive Summary 

Soils and soil moisture play a predominant role in off-road vehicular mobility, and as 

such they play an important role in the army's strategies, logistics, mobility and field operations. 

This is especially true in adverse terrain, such as muddy (expansive soils). Problems associated 

with simulating and predicting vehicle terrain interaction in adverse environments are immensely 

complicated, as soils are diverse and soil moisture dynamic. Yet it is the army's goal to develop 

an all-weather, all-terrain capability. This goal suggests the complicated, diverse and dynamic 

interaction of terrain with vehicles must be understood and simulated from a mechanistic 

perspective. 

The army currently has an ability to model vehicular dynamics on smooth, hard terrain; 

yet the interaction of a vehicle with "real" terrain is beyond current simulation capability. It is 

this latter point that this report begins to address. Secondly, we have studied from first principles 

one of the most dynamic and restrictive conditions to army system performance; expansive-soil 

deformation. 

As originally set out in the proposal, our goals were to develop constitutive models for 

expansive soils which incorporate the effects of electrolytes and heat transfer, and to begin 

development of numerical simulators for the resultant balances of mass, momentum and energy 

in the presence of dynamic loads. Over the three year funding period, significant advance 

toward achieving both goals was accomplished.   In fact, in the area of constitutive model 



development we have actually exceeded the goals of the original proposal. Below, in the form of 

bullets, we summarize what has been accomplished to date. 



1. Capillary condensation and snap-off in nanoscale contacts (these results were highlighted on 

the Feb. 6, 2001 cover of the Amer. Chem. Soc. Journal of surfaces and colloids, 

Langmuir). 

When a surface is placed in a vapor, several layers of molecules may adsorb depending 

on the intermolecular forces involved. As two such surfaces are brought together, a critical point 

is reached at which the gas condenses between the surfaces, forming a capillary across the gap. 

A cohesive force is associated with the condensed bridge. The reverse process wherein the 

capillary bridge degenerates as the surfaces are moved apart is called snap-off. These processes 

play a profound role on scales from the nano to the macro. We have studied this phenomenon 

via isostrain grand canonical Monte Carlo statistical mechanical simulations for Lennard-Jones 

fluids. Specifically, we have examined capillary condensation and snap-off between 

nanocontacts, infinite rectilinear nanowires, and finite rectilinear nanoplatelets, where 

macroscale concepts and theories are just about impossible to apply. These results are compared 

to condensation between infinite parallel plates. We discuss our results in terms of the Kelvin 

equation and van der Waals film-thickening model. 

2. Coupled solvent and heat transport of a mixture of swelling porous particles and fluids: 

single time-scale problem. 

A three-spatial scale, single time-scale model for both moisture and heat transport is 

developed for an unsaturated swelling porous media from first principles within a mixture 

theoretic framework. On the smallest (micro) scale, the system consists of macromolecules (clay 

particles, polymers, etc.) and a solvating liquid (vicinal fluid), each of which are viewed as 

individual phases or nonoverlapping continua occupying distinct regions of space and satisfying 

the clasical field equations.  These equations are homogenized forming overlaying continua on 



the intermediate (meso) scale via hybrid mixture theory (HMT). On the mesoscale the 

homogenized swelling particles consisting of the homogenized vicinal fluid and colloid are then 

mixed with two bulk phase fluids: the bulk solvent and its vapor. At this scale, there exists three 

nonoverlapping continua occupying distinct regions of space. On the largest (macro) scale the 

saturated homogenized particles, bulk liquid and vapor solvent, are again homogenized forming 

four overlaying continua: doubly homogenized vicinal fluid, doubly homogenized 

macromolecules, and singly homogenized bulk liquid and vapor phases. Two constitutive 

theories are developed, one at the mesoscale and the other at the macroscale. Both are developed 

via the Coleman and Noll method of exploiting the entropy inequality coupled with linearization 

about equilibrium. The macroscale constitutive theory does not rely upon the mesoscale theory 

as is common in other upscaling methods. The energy equation on either the mesoscale or 

macroscale generalizes de Vries classical theory of heat and moisture transport. The momentum 

balance allows for flow of fluid via volume fraction gradients, pressure gradients, external force 

fields, and temperature gradients. 

3.    Thermomechanical dual porosity theories for swelling porous media with microstructure 

Thermomechanical microstructural dual porosity models for swelling porous media 

incorporating coupled effects of hydration, heat transfer and mechanical deformation are 

proposed. These models are obtained by generalizing the three-scale system of Murad and 

Cushman [56,57] to accommodate heat transfer effects and their influence on swelling. The 

microscale consists of macromolecular structures (clay platelets, polymers, shales, biological 

tissues, gels) in a solvent (adsorbed water), both of which are considered as distinct 

nonoverlaying continua. These continua are homogenized to the meso (intermediate scale) in the 

spirit of hybrid mixture theory (HMT), so that at the mesoscale they may be thought of as two 



overlaying continua. Application of HMT leads to a two-scale model which incorporates 

coupled thermal and physicochemical effects between the macromolecules and adsorbed solvent. 

Further, a three-scale model is obtained by homogenizing the particles (clusters consisting of 

macromolecules and adsorbed solvent) with the bulk solvent (solvent not within but next to the 

swelling particles). This yields a macroscopic microstructural model of dual porosity type. In 

the macroscopic swelling medium the mesoscale particles act as distributed sources/sinks of 

mass, momentum and energy to the macroscale bulk phase system. A modified Green's function 

method is used to reduce the dual porosity system to a single-porosity system with memory. The 

resultant theory provides a rigorous derivation of creep phenomena which are due to delayed 

intra-particle drainage (e.g. secondary consolidation of clay soils). In addition, the model 

reproduces a class of lumped-parameter models for fluid flow, heat conduction and momentum 

transfer where the distributed source/sink transfer function is a classical exchange term assumed 

proportional to the difference between the potentials in the bulk phase and swelling particles. 

4.    Macroscale thermodynamics and the chemical potential for swelling porous media 

The thermodynamical relations for a two-phase, TV-constituent, swelling porous medium 

are derived using a hybridization of averaging and the mixture-theoretic approach of Bowen. 

Examples of such media include 2-1 lattice clays and lyophilic polymers. A novel, scalar 

definition for the macroscale chemical potential for porous media is introduced, and it is shown 

how the properties of this chemical potential can be derived by slightly expanding the usual 

Coleman and Noll approach for exploiting the entropy inequality to obtain near-equilibrium 

results. The relationship between this novel scalar chemical potential and the tensorial chemical 

potential of Bowen is discussed. The tensorial chemical potential may be discontinuous between 

the solid and fluid phases at equilibrium; a result in clear contrast to Gibbsian theories.   It is 



shown that the macroscopic scalar chemical potential is completely analogous with the Gibbsian 

chemical potential. The relation between the two potentials is illustrated in three examples. 

5. Thermomechanics of swelling viscoleastic two-scale porous media 

A two-scale theory for swelling viscoelastic media is developed. At the microscale, the 

solid matrix interacts with the solvent through surface contact. The relaxation processes within 

the matrix were incorporated by modeling the solid phase as viscoelastic and the solvent phase as 

viscous at the mesoscale. We obtain novel equations for the total stress tensor, chemical 

potential of the solid phase, heat flux and the generalized Darcy's law all at the mesoscale. The 

constitutive relations are more general than those previously developed for the swelling colloids. 

The form of the generalized Fick's law is similar to that obtained in earlier works involving 

colloids. Using two-variable expansions, thermal gradients are coupled with the strain rate 

tensor for the solid phase and the deformation rate tensor for the liquid phase. This makes the 

experimental determination of the material coefficients easier and less ambiguous, and clearly 

illustrates the role of third-order tensors in anisotropic media. 

6. Thermomechanics  of swelling  viscoelastic  three-scale  porous  media  with  temporal 

nonlocality 

A two-scale theory for swelling media with multiple species is developed. At the 

microscale, the interaction of the solid with the fluid phase is considered. The relaxation 

processes within the matrix are incorporated by modeling the solid phase as viscoelastic. Novel 

equations for the total stress tensor, chemical potential of the solid phase, heat flux and the 

generalized Darcy's law are obtained. The equations are more general than those developed for 

swelling colloids. The form of the generalized Fick's law remained similar to that obtained in 

the previous colloidal media studies.   With two-variable Taylor series expansion, the thermal 



gradient effects are coupled with the rate of strain tensor of the solid phase and the rate of 

deformation tensor of the liquid phase. This makes the experimental determination of the 

material coefficients easier and makes a clear distinction of the cross-effects exhibited by the 

anisotropic media. 

7. Multicomponent,    multiphase    thermodynamics    of   swelling    porous    media    with 

electroquasistatics: Macroscale field equations 

A systematic development of the macroscopic field equations (conservation of mass, 

linear and angular momentum, energy, and Maxwell's equations) for a multiphase, 

multicomponent medium is presented. It is assumed that speeds involved are much slower than 

the speed of light and that the magnitude of the electric field significantly dominates over the 

magnetic field so that the electroquasistatic form of Maxwell's equations applies. A mixture 

formulation for each phase is averaged to obtain the macroscopic formulation. Species electric 

fields are considered, however it is assumed that it is the total electric field which contributes to 

the electrically induced forces and energy. The relationships between species and bulk phase 

variables and the macroscopic and microscopic variables are given explicitly. The resulting field 

equations are of relevance to many practical applications including, but not limited to, swelling 

clays (smectites), biopolymers, biological membranes, pulsed electrophoresis, and 

chromotography. 

8. Multicomponent,    multiphase    thermodynamics    of   swelling    porous    media    with 

electroquasistatics: Constitutive theory 

We exploit the entropy inequality to obtain restrictions on constitutive relations at the 

macroscale for a 2-phase, multiple-constituent, polarizable mixture of fluids and solids. Specific 

emphasis is placed on charged porous media in the presence of electrolytes.   The governing 
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equations for the stress tensors of each phase, flow of the fluid through a deforming medium, and 

diffusion of constituents through such a medium are derived. The results have applications in 

swelling clays (smectites), biopolymers, biological membranes, pulsed electrophoresis, 

chromotography, drug delivery, and other swelling systems. 

9.    Numerical methods and examples 

Several finite element techniques are used to simulate consolidation coupled with pore- 

fluid transport. Several elastic and viscoelastic constitution theories are employed and capillarity 

is taken into account. Both moving and stationary grids are studied. Where possible model test 

cases are compared with analytical solutions. A novel problem, moving loads with shear and 

normal stress, was studied in detail. 
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I.    Thermomechanics of swelling viscoelastic two-scale porous media 

1. Introduction 

Swelling viscoelastic systems are ubiquitous; examples include soils, proteins, 

carbohydrates, foods, cartilages, membranes, plant seeds, drugs, contact lenses etc. In such 

systems a discrete hierarchy of scales is present due to their complex nested porous structures. 

Here we consider two scale systems. 

Fig. 1 illustrates a three-scale (micro, meso, macro) system of interest. It is composed of 

a solid-matrix and solvating fluid. The solid matrix and the vicinal fluid (fluid solvating the 

matrix surface) exist as separate phases on the microscale (of the order of microns). The mixture 

of the solid matrix with the vicinal fluid on the mesoscale are represented by a particle in the 

diagram. The particle itself may exist in a bulk phase fluid, but we leave that problem to the 

future. At the mesoscale each constituent in each phase and in each interface and the phases 

themselves are considered as overlaying continua defined over all space. Most phenomenon 

exhibited at higher scales are a manifestation of interactions taking place at smaller scale. The 

mesoscale swelling/shrinkage exhibited by these systems results from the solvation of solid by 

the fluid on the microscale [24]. This necessitates the modeling of thermomechanical processes 

such as stress-cracking, extrusion, consolidation, and transport processes such as drying, 

conditioning, solvent-extraction, controlled drug and pesticide release, encapsulated germination 

over a hierarchy of scales. 

Many methods are available for upscaling information from lower to higher scales 

[13,21]. We chose to use the hybrid mixture theory (HMT) approach. HMT involves volume 

averaging of equations of mass, momentum, energy and entropy at the microscale to obtain 
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equations at the mesoscale. In a two-scale approach, the constitutive equations are formulated at 

the mesoscale by exploiting the entropy inequality in the sense of Coleman and Noll [12]. 

HMT was developed by engineers to explain the thermomechanical behavior of natural 

geologic media. Many polymeric systems are porous and so amenable to a similar treatment. 

Experimental work by Etzler [15,16] has shown that the physics of interaction of water in silica 

and cellulosic surfaces is nearly identical. For these reasons, the HMT approach has been very 

successful in explaining the thermomechanical behavior of food gels [2]. HMT was introduced 

by Hassanizadeh and Gray [19,18] for non-interacting granular porous media. Achanta et al. [1], 

Bennethum and Cushman [3,4], Murad et al. [26], and Murad and Cushman [2729] extended 

these ideas to swelling and shrinking systems with multi-constituents where interactions between 

phases play an important role. However, in all previous works with HMT, the solid phase was 

assumed to be elastic solid and the liquid phase was assumed to be viscous. These studies were 

either aimed at swelling colloidal systems [26,3,4], or were adapted for polymeric systems from 

colloidal systems [1,3,4,2,9], for which the assumption of elastic solid phase holds. The systems 

exhibited viscoelastic behavior only at the macroscale, which resulted from microscale 

interaction of the elastic solid-phase with the viscous fluid-phase. These theories ignored the 

microscale relaxation processes of the polymeric matrix, which arise due to conformational 

changes in the flexible thread-like polymer chains [17]. The viscoelastic nature of the polymers 

is exhibited even at very small magnitudes of strains [17]. The focus of this study is on the 

viscoelastic swelling solid phase. We present a two-scale theory with the assumption that at the 

mesoscale the solid phase is a Kelvin-Voigt material and the liquid phase is a viscous fluid. This 

will make our work more general and applicable to a large class of polymeric and biopolymeric 

media subjected to a wide range of processes.   Additionally, in previous HMT based theories 
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near-equilibrium equations were obtained by linearization around single variables, which made 

the coefficients a function of the thermal gradient. Here, we will use two-variable linearization 

to couple the thermal gradient with the rate of strain tensor of the solid phase and the rate of 

deformation tensor of the liquid phase. This will also make the linearization coefficients 

independent of the thermal gradient. 

Notation 

We consider a two-phase (e.g. solid-liquid) system with N components. The two phases 

are represented by a and ß. For simplicity, we assume that the interface between the two 

phases is free from thermodynamic properties. Following the axiom of equipresence of 

constituents [1], we assume at the outset that each phase contains same set of N-constituents 

(some may be at zero concentration).   The subscript a} represents the property of the j 

constituent in the« phase. The hatted quantities, such as pea> represent property transfer from 

one phase to the other. The hatted quantities like ra' represent property gained by the j 

constituent within a phase due to chemical reactions. The complete nomenclature is presented in 

Appendix C. We lay out the equations in Eulerian coordinates with subscripts k and 1 

representing the coordinate directions and repetition of these indices implying summation. The 

use of capital letters such as K and L with certain quantities represents Lagrangian coordinates. 

The indices k, 1, K and L range from 1 to 3. 

2. Constitutive Theory 

The mesoscale field equations are applicable to all kinds of materials and are presented in the 

Appendix A.  These equations are closed for specific materials by imposing restrictions on the 
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constitutive functions through the axioms of constitution [14] and entropy inequality in the sense 

of Coleman and Noll [12]. 

Here, we consider a two-phase solid (s)-liquid (w) system. At the mesoscale, the solid 

phase is considered viscoelastic and the liquid phase is considered viscous. The viscoelastic 

solid and the viscous liquid will interact to make the material behave as a viscoelastic solid at the 

mesoscale. For simplicity we assume that the viscoelastic solid is of Kelvin-Voigt type, whose 

constitutive variables depend upon the first order time derivative of the strain tensor. It is easy to 

further generalize the viscoelastic nature by including higher order time derivatives of the strain 

tensor but this adds little to our discussion here. Following is the list of unknown variables: 

T?a!     ßlal     ~ai     AaJ E ' ,p</> J,TJ J,J]    . 

The mass conservation equation (A.l) corresponds to the unknown £apa'. The momentum 

(A. 10) and energy (A. 18) balance equations, correspond to v"J and T, respectively. Additional 

equations are obtained by considering the following variables to be constitutive or dependent: 

£a, ßea',ra',ta
u', 

ßpX',Aa',ql', ßQa',t', Pi">,rf>,^'. (2.2) 

These constitutive variables are considered to be a function of the following set of independent 

variables: 

£\ £apa', («V),/, <'% «f, T, T„ E*KL, E^„ ta, «C, «3. (2.3) 

In (2.3) only £w is listed because it is related to E
S
 by (A.7). Therefore, we can chose either ew 

or £s as independent but not both. The variables £" and pa> always appear as a product £a pa>, 

which arose during the upscaling of the equations from micro to the mesoscale. All the variables 

have a corresponding equation, except for £a.   This is the closure problem, and following 
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Bowen [11], we formulate the additional equation by postulating that e" is a dependent variable. 

The variables sw and (ewpWj), account for the liquid-solid interaction at moderate to high 

solvent content. The liquid-solid interaction occurs through solvation forces, which lower the 

chemical potential at the interfaces in comparison to the bulk liquid [25,22,23,11,24]. This 

causes liquid movement from the bulk phase to the interface, pushing apart the solid, which in 

turn produces swelling.   The E5^ and E^j account for the elastic deformation of the solid 

matrix.  At low moisture contents, E^, incorporates relative shear between two solid surfaces 

separated by only few molecular layers of water [27,7]. In a connected solid matrix a 

macroscopic deformation results in a gradient of the strain tensor at the mesoscale, which is also 

captured by the E^,. At the mesoscale, the viscoelastic nature of the solid polymer is captured 

We assume that at least one of ßeaj or r"J is not equal to zero due to which (espSj), and 

E^ can be varied independently. Thus, both (sspSj)j and E^ are included in the list (2.3) of 

independent variables.   Otherwise, (espSj), and E^ would be related by the mass balance 

equation (A.l) and the equation, ES
KL - x^x^dy, and only one would be required in the list 

(2.3). 

Thermal energy production may arise in a material during deformation or due to an 

external source. The variables 7 and 7} account for the conduction of this thermal energy.  At 

very high or low rates of heat transfer, Tt would not be required because in the former case the 

material responds so quickly that it can be considered to be at uniform temperature (7)«1), and 

in the latter case, the temperature change is so slow that its effects are negligible.    At 
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intermediate rates of heat transfer, the thermal gradient becomes important. The viscous nature 

of the liquid phase is incorporated through the d^. The term u^ leads to the viscous resistance 

of the fluid phase to the diffusion of species. For most practical purposes, the diffusion of 

species in the solid phase is negligible. Therefore, u^, is not included in the list of independent 

variables. 

The axiom of equipresence requires that initially all constitutive variables should be 

expressed in terms of the same list of independent variables until the contrary is proven[14]. It 

can be shown that the Helmholtz free energies are functions of the subsets of the list (2.3) [20]. 

Additionally, from physical knowledge of the system we know that the Helmholtz free energy of 

the solid phase depends upon e"pSj and of the liquid phase depends upon ewpWj. Therefore, to 

save computations we postulate the dependence of the Helmholtz free energies on subsets of list 

(2.3) as: 

^=^;(*VV^ÄÄ), (2.4) 

A;=4(sw
tSp'',T,E'at&KL). (2.5) 

All other dependent variables are considered to be a function of all independent variables in list 

(2.3). The free energies appear in the entropy inequality (A.41) as material derivatives. Using 

the chain rule, the following expressions for the material derivatives of the free energies can be 

obtained: 

DwAf = aff Dwew { A    ÖAJ     Dw(ewpw') | dA? DWT | 

Dt      dsw   Dt   + %d(ewpw>)       Dt      + dT   Dt+ (26) 

dAJ D»E°KL x dA? D"E*KL 

dE'u    Dt      dE'u    Dt   ' 
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D^__dA^ Dsew { A  a^;   D\esp') | a*; DT t 

Dt      dsw   Dt     %d(£spJ)      Dt dT  Dt 

W *. A a*,' 
dEs

KL   "   dEKL 

The following identities will be needed to rewrite equations (2.6) and (2.7) in suitable forms 

before substitution into the entropy inequality (A.41): 

^l = El+v^ (2.8) 
Dt      Dt 

¥1 = 21^ (2.9) 
Dt       Dt 

where, <j> is a scalar function. The pressures and the chemical potential have been defined in 

more than one way in the literature [10,1,9]. For example, the chemical potential of Bowen [10] 

is a tensor, whereas in classical thermodynamics the chemical potential is a scalar. We will use 

the scalar valued definitions proposed by Bennethum et al. [9], which are equivalent to the 

definitions in classical thermodynamics. In classical thermodynamics, total Helmholtz energy, 

A" is expressed as: 

Aa=Aa(Va, Maj, T) (2.10) 

Divide Aa by mass of the a phase and normalize V, Ma> by the weighted averaging volume. 

This gives: 

Af=Af(sa,eapaj,T) (2.11) 

Here we used, 

*1.ÜL1I_«V* (2.i2) 
V       V"   V 

The classical pressure, Pais defined as: 



17 

?a=- 
8Aa 

dVa 

8(MaA?) 

VaM° 
V Va A? 

M"'T 
dva 

M"'T V 
(2.13) 

M"J,T 

d(£apaA?) 
dsa 

= -e°P°d^ 
eapa'j 

dsa 
£ap"'.T 

Thus we have the classical pressure defined in terms of the intensive variables needed to model 

open systems. Another quantity that needs to be defined is: 

N F)Aa 

7=1 °P 
(2.14) 

s",T 

which we refer to as the thermodynamic pressure.   For a single medium composed of single 

species only, p" reduces to the classical thermodynamic pressure, Pa: 

a a1 ÖA" =p° (2.15) 
£°,r 

Further physical interpretation of p" will be made clear after its relationship to the stress tensors 

are obtained from the exploitation of the entropy inequality. 

The chemical potential, juaj is defined as: 

p' = 
dAa 

8M° 

8(MaA?) 

V,T 8M"J 

8 
_   V 

VaM° 
V Va A? 

V,T 

d(eapaA?) 

d(eap"J) 
= A?+p' 

V Va y 

a8A? 

(2.16) 

e",T dp"1 

V,T 

s°,T 
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In the entropy inequality, the terms involving u"J and u"J, have N-l independent variables and 

one dependent variable because, ^p"Ju"J = 0. Thus, the following identities due to Bennethum 
;=i 

et al. [9] will be needed to rewrite these terms as N-l independent terms: 

AM ( "J a,       p 
F«J -±L-F?» 

-,<*N 

N-l ( 

!<?>*> ix; 
y=i y-i 

^ N-l 

y=i 

r ^ ^ 
oa" 

ut 

(2.17) 

(2.18) 

where, F°J and G"/ are the vector and tensor valued coefficients of u"] and u"Jj, respectively. 

Substituting equations (2.6) and (2.7) in the entropy inequality (A.41) and simplifying 

using identities and definitions (2.8) - (2.18), we obtain: 



A-Z 
e p ¥L + rf\— 

dT I Dt 

1 __L(p*_pw)£" 
T 

1 
+— 

T 
£ P Aw -^ tu -£ tkl +£ 2Ju    AK,kALJ E\ KL 

a    l    >=1 

a JV-1 

4w 

f 
t Of' -f')p*6M +[ # "^C   "/>"' (^ -^)** u kj 

( 
^/   ^„«^ 

w "\ 

- + £•   £» 
^/a 

£ xt 
xz, / 

w,sylw,s  I w *f/ 

—zS^-^+^V"" 
T 

a y=r 

-PVjt+ffV 

(2.19) 
f W Es  +^LE* ^ 

*\ jis        KL k       a T?s        KL,k 
Dürr OEJ K^'-'KL 

e p  '—+71 
dT 

KL 

\ 

Tk + %w 

•w?>0. 

where the terms /£ and /* are the Terzaghi and hydration stresses, respectively: 
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tse _     s   VA-l       *       s 
lkl  — P    ar,s    Xk,KXl,L 

Öt'KL 

(2.20) 
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The Terzaghi stress, t% is the elastic component of stress in the medium and t% results from 

physico-chemical forces between the solid and solvent [8]. If the solid phase had been assumed 

to be elastic, the terms in the 3rd row of the entropy inequality (2.19), would have been grouped 

as a coefficient of ds
u. However, since we are modeling the solid phase as viscoelastic, ds

u was 

converted to the independent variable ES
KL using the equation: 

^=M,A <2-22) 

3. General Non-Equilibrium Relations 

In the entropy inequality (2.19) the variables   f ,uk
Jj and Ej^   are neither dependent nor 

independent. These variables can vary arbitrarily. Therefore, to satisfy the entropy inequality 

for all processes, the coefficients of these variables must be zero. This leads to the following 

non-equilibrium equations: 

'dAf 2>V dT + 7 = 0 (3.1) 

p ara     
p dE*KL 

% -4-'« =P'{ASI -ASN -»'+^K (3-3) 

Equation (3.1) implies that the sum of terms over a is zero, but in accordance with the classical 

thermodynamics of one phase we are assuming the following: 
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T]a=-^- (3.4) 

The free energy of one-phase Kelvin-Voigt solids is not a function of the rate of strain tensor 

because during exploitation of the entropy inequality, dA] ldE5
KL becomes zero [14]. However, 

such a conclusion cannot be made from (3.2), unless we assume that the entropy inequality holds 

for the solid and the liquid phase separately. But in the most general framework,   this   of 

course need not be true. 

The variables for the jtt component in equation (3.3) depend upon the variables for the 

N01 component. Thus, (3.3) depends upon labeling of species. To remove this dependence, we 

sum (3.3) from j =1 to N and simplify using (A.12), (A.39), (2.14) and (2.16). We obtain: 

^-A*»Su+»-Su=^+\±ps>u>u;< +^Skl. (3.5) 
P" P     P j-\ P 

To simplify (3.5) further we need an expression for tsa, whose equilibrium and near-equilibrium 

forms will be obtained in the consecutive sections. 

4. Equilibrium Restrictions 

We define the thermodynamic equilibrium when the following variables become zero: 

s\tatd:XM,ß?',v;*,ui' (4.i) 

here, j = 1 to N-l for iij{, uk
J and j = 1 to N for pea>. The list (4.1) does not contain fa' because 

it requires the equations of chemical reactions, which we have not incorporated. At equilibrium 

the entropy reaches its maximum value and the net generation of entropy, A, attains a minima. 

Thus, dA I dx = 0 and 52A / dxdy > 0. Where x and y are the variables in list (4.1). We obtain the 

following results: 
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p* =P" 

tu=-pou+tu +—?tu 

tu=-p sM 

(^ -s* )p*'6M Jtf -^ff W' (A* -A«» )SU = o 

2>%a=o 

p' =PJ 

%w=PweJ-ewpw M, 

K&k 

\w r)Aw    . 
— Ejtr, L +  _ .        &r, 

d£; Al y 

PJ 

^ 
°w 

>V 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

where j = 1 to N-l in (4.5) and (4.9). To obtain an expression for pSj at equilibrium, substitute 

tsu from (4.3) in (3.5). This yields: 

P p°    e°p° 
(4.10) 

Substituting (4.10) into (3.3) to eliminate the N* constituent variables and rearranging yields the 

following equation for pSj at equilibrium: 

p'    P     £ P 
(4.11) 
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To remove the N component dependence from (4.5), sum (4.5) from j = 1 to N and substitute the 

expression for fu from (4.4) into the result. We get: 

hL--A^Su+^Skl=Q (4.12) 
P 

which, upon substitution in (4.5), results in the following expression for p' at equilibrium: 

tPsM=A*'sM-!!L- (4-13) 
p1 

This equation states that at equilibrium the shear components of iy are zero. This is expected 

because comparison of this equation to (4.4) shows that at equilibrium the stress in the liquid 

phase arises only due to the thermodynamic pressure. 

To remove the N component dependence from (4.9), sum (4.9) from j = 1 to N.  Using 

(2.16), we obtain: 

P jm\ OP 

A?Jie
apa+(eapaAa» )k -eaQ {£\ (4'14) 

N        . N 

Here we used  ]Tßtk' = ßtk  and  ^ik
aj =0,  since at equilibrium  u"J=0.    Let us take 

ß = s and a - w. Based upon (2.4) the term A™ k can be computed as: 

Al -k ~de«£'k+ii a(* V) *    dTT* + 
1
     K   y  ' (4.15) 

a 17*        KL,k       rsi?s        KLJc 

Substituting sTk   from (4.8) and A™ k from (4.15) in (4.14) and simplifying we obtain: 
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^('ff +hw" )-?•* [ewP% +{ewpwAw« )reXN 

KP
W
"J 

= 0       (4.16) 

Finally, by substituting (4.16) in (4.9), we obtain the following expression for sTk ' + ik ' at 

equilibrium: 

sfk
Wj+ik

Wj =juWj(ewpWj)k-(ewpw'Aw<)k. (4.17) 

where (4.17) holds for j = 1 to N. 

5. Near-Equilibrium Relations 

In the entropy inequality (2.19), the coefficients of variables becoming zero at equilibrium [list 

4.1)] are functions of these variables.   For example, the coefficient of J, is a function of all 

variables in the list (4.1). To satisfy the inequality, these coefficients are linearized to form 

positive quadratic terms. Linearization is performed by Taylor series expansion around the 

variables becoming zero at equilibrium and truncating the second and higher order terms. 

Because of truncation, the results hold only near-equilibrium. Taylor series expansion of each 

coefficient can be performed around one or more variables vanishing at equilibrium. For 

example, let zi and Z2 be two variables becoming zero at equilibrium. Let f(zi,Z2) be the 

coefficient of Zi in entropy inequality. Linearization of f around Z\ yields the following 

expression: 

^-V'C.fefc (5.1) 

Where Ci, is a function of Z2. Linearization of f around zi and Z2 leads to: 

fncrf.q+C.Z.+ C^ (5.2) 
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In this expression Ci and C2 are not functions of zi and Z2. Equation (5.1) gives fewer terms in 

the linearized equations but the form of the coefficient must be evaluated as a function of z%. 

The choice of whether to linearize around one or more than one variable leads to different results 

which have advantages and disadvantages. Linearizing around two variables as in (5.2) yields 

linear forms for both variables, but introduces a linear truncation error related to the second 

variable. Experimentally, constant coefficients are preferred as they are easier to evaluate than 

functions. 

Technically, each term in the entropy inequality involving variables given in (4.1) can be 

linearized about each of the variables in (4.1). However, this yields unwieldy expressions. 

Therefore, we perform one term Taylor series expansions of the coefficients of all variables in 

the list (4.1) except for the coefficients T,,ES
KL and d„, where we perform a two-term 

expansion. To obtain thermoviscoelastic and thermoviscous effects we perform a two-term 

linearization around 7) and E'a for the solid phase; and T, and d% for the liquid phase. The 

resulting linearization coefficients are a function of he remaining independent variables 

(E*KL,dl,uZ,T„v;\ua
k>) listed in(4.1). 

Let us elucidate another important issue related to linearization before presenting the 

results. Consider a variable V vanishing at equilibrium and appearing in the entropy inequality 

as follows: 

(A+B+C)V>0 (5.3) 

Here, the variables A, B and C are functions of V.   Suppose, we are interested in the near- 

equilibrium form for the variable A. Linearization can be performed in the following two ways: 

First, 
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Aneq=Aeq+AD (5.4) 

A^ = -(B+C) (5.5) 

AD=uV (5.6) 

Here, AD is called the dissipative part of the variable A. AD is zero at equilibrium and non-zero 

near-equilibrium. The coefficient u resulted during linearization. By substituting (5.5) and (5.6) 

in (5.4), we get: 

Aneq = -(B+C)^ + uV. (5.7) 

An alternative method of obtaining near-equilibrium relations for A is: 

(A+B+C)neq = (A+B+C)eq + (A+B+C)D, (5.8) 

(A+B+C)eq=0 (5.9) 

(A+B+C)D=uV (5.10) 

By substituting (5.9) and (5.10) in (5.8) we obtain: 

Aneq=-(B+C)neq+uV. (5.11) 

The relation (5.11) is more general than the relation (5.7), unless (B+C)^ is equal to the 

(B+C)neq.   Often in the continuum mechanics literature the forms (5.7) and (5.11) are used 

without clarifying the underlying reasons. We suggest that whenever possible, form (5.11) be 

used initially and later the simplifications be made using physical arguments. In the following 

discussion we will obtain results based on (5.11) except when removing the N-component 

dependence from variables. In the latter case it is easy to perform manipulations by using form 

(5.7). By linearizing around ew we obtain the following equation: 

Pw-Pi= Ms" (5.12) 
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where M is a scalar coefficient. Equation (5.12) implies that the rate of swelling, sw of the 

polymeric system is directly proportional to the difference in classical pressure between the solid 

and the liquid phases. Equation (5.12) is similar to Thomas and Windle's [31] equation 8. 

For tsu forms (5.7) and (5.11) yield similar results. We will linearize t'u and the heat flux 

about T, and EJ^. Let, 

f N     \      ( N     \ 

neq 
I'i' 

KM     ) 

N        \ 

eq KM     )    DKM     J 
(5.13) 

where, the equilibrium part is given by (4.3). Thus, 

neq KM     ) e DKM     J 
(5.14) 

Let us denote the solid phase coefficient of 7} by QJ: 

ßf-tf+E 
M 

1 J/       sl     I     -si - .Sl -t'M+\A>J +^uW \p''u? (5.15) 

Substituting (5.14) and (5.15) into the T, and ES
KL terms of the entropy inequality, (2.19) we get: 

T 

( N \ 

KM      J 
WA+^!^o (5.16) 

By linearizing we obtain: 

r K    \ N     1 
/ ,i/d     = ^KLMN^MNXk,KXl,L + "klm*,rr, 

DKM     J 
(5.17) 

Ql  - K-U*Jc +^K1MXI,K^IM (5.18) 

here, the coefficients G^^, Hs
Um, K'u and JS

KLM are not functions of E^ and T,.   GS
KIMN is a 

fourth order positive semi-definite tensor responsible for stress dissipation due to relaxation 
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processes within the solid polymers. Hs
klm and JS

KIM are third order tensors. The Hs
Um term 

causes thermal gradients to affect the stress field inside an anisotropic solid phase. Because of 

the Js
Km term, the heat flux arises inside an anisotropic solid phase due to the strain rate. Given 

that the third order tensors are zero under full orthogonal group of transformations, Hs
klm and 

J
KLM would vanish for the isotropic solids [30]. Due to symmetry of the stress tensor and the 

strain rate, the third and fourth-order coefficients satisfy the following symmetry relationships: 

KUAN ~ ^LKMN ~ v-r. 

TTS       _    ITS 
nklm — nlkm 

Ts     = Js J
 KIM       u KML 

KLNM 

(5.19) 

By substituting (5.17) in (5.14) and (5.18) in (5.15), we obtain the following near equilibrium 

equations: 

fu=-p'Su +t: +V" -2>VM'' +Gs
KlMNE

s
UNxlKxlL+Hs

klmTl 
£ 7=1 

m ' (5.20) 

si 

«f-Z 
7=1 

^-(^+^y^ + K-kiTt + JKLM
X

I,K^LM (5.21) 

Similarly, we can linearize about cTu and T, to obtain the following near-equilibrium equations 

for t„ and qj: 

t^-p^+o^dl+H^T^-Zp^up (5.22) 

«r=S 
j=l 

1 Wy     W, _W/     W; 

W~M +2U" k y    ' +KkiT,k+GLdL- (5.23) 

Here, vlmn is a fourth order, positive semi-definite viscous dissipation tensor. Similar to the solid 

phase, the third order tensors,  Hklm and GJmn  introduce the cross-effects of the temperature 
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gradient on the stress tensor, and the rate of deformation on the heat flux. For an isotropic fluid 

phase H%m and GJmn disappear. Due to symmetry of the stress tensor and the rate of deformation 

tensor, the vlmn, H%m and G?mn satisfy the following symmetry relationships: 

Vklmn ~ °tkmn ~ °Unm 
TTW      _    TTW 
nUm — n\km 
f~lW           (-IVI 

(5.24) 

Substituting t'u from (5.20) in (3.5) and further substituting the resulting N-component terms in 

(3.3), we obtain the following equation for juJ near equilibrium: 

PJ   p \     s ) 
(5.25) 

In the solid-phase chemical potential equation (5.25), the term G'^j^El^xl^x^ has not been 

reported in previous colloidal-media studies. This implies that the solid-phase chemical potential 

of the polymeric systems is a function of the strain rate. 

Performing  singe-variable  linearization about   weJ', u™j, v^ and u"J, we  obtain the 

following near-equilibrium equations: 

H' -ju J =/r e 1 —u/u,J +—u, JU, ' + —V, ' V, ' 

t' 
f*    °kl ~ ^UmnUm,n 

+ A    °kl w, 
PJ 

SrpW „   .,w,s      pw    w w     w 1k   =~Kkivl    +? £ ,k~€ p M-E?a l+^Es
KLl+{nw+— 

dEs
KL   

w   dE*KL   "■*   y      8T) 

%WJ + iWj = -RW + MWJ (* V ) k - (SWPWJAWJ ) k. 

(5.26) 

(5.27) 

(5.28) 

(5.29) 
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The coefficients K-7,C^,n,i?w andi^ are the linearization coefficients of these equations.   In 

(5.28) the term in round brackets will vanish due to (3.4).   We did not linearize about uk
J 

because in our system solid-phase diffusion was assumed negligible so that uk
J was not an 

independent variable. Hence, the coefficient of uk  cannot be a function of uk. 

Total Stress and Heat Flux 

The total particle stress tensor and the particle thermodynamic pressure are obtained by summing 

over the solid and the liquid phase. These are defined as [8]: 

t^eYu+e^ (5.30) 

p = ssps+£wpw (5.31) 

Substituting (5.20) and (5.22) in (5.30) and using (5.31), we obtain: 

tu^-pSu+e* t/cl +~7tkl +^KIMN^MNXk,KXl,L+"klm\m   \ + 

8 ) 
W /      W        J»       ,     TTW    rp     \ 

£   \Vklmnamn + nklmI,m)' 

(5.32) 

Here, the second order term ^ip
aju"iua

k
i was neglected because the diffusion velocities are of 

small magnitude. In the total stress tensor equation (5.32), the Gs
KlMNE

s
MNxk

1
Kx!!

Uj term accounts 

for the relaxation processes within the solid polymeric matrix. In the previous porous media 

studies [19,18,1,26,3,4,28], this term could not be obtained due to the assumption of an elastic 

solid phase. 

The total heat flux of a particle can be taken as [5]: 



q,=£sqf+£wq; 

Substituting (5.21) and (5.23) in (5.33) to eliminate qj and qj we obtain: 

N 

s «.-II«' Q«?-U1 t^u?«?"1-"-'■ pJu,J + (e*K*kl+£»KZ)Tk + 

S  TS s     ps       ,   cwfw   J* 
£ JKLMX1,K£'IM "t"fc   KJlmnamn- 

Given that diffusion velocities are small, the third order term in u"J can be neglected. 
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(5.33) 

(5.34) 

Isotropie Stress and Heat Flux 

Tf the solid and liquid phases have isotropic properties, the third order tensors disappear.  The 

second and fourth-order coefficients follow these relations [30]: 

Ka
u=Ka8u,    a = s,w 

GKIMN = ^SKLSMN + M* (SKMSLN + SKNSIM ) (5.35) 

Substituting (5.35) in (5.32) and (5.34), and simplify to obtain the following equations for the 

total stress: 

(       £w • ^ 
tu = -p8u + £s $ +—t%+ A'ELuct, + 2nsEs

KLx[Kxs
lJj 

^(AV:+2«)( 

c"   - xs   xs 

(5.36) 

(5.37) 

here, c'h"' is the Finger deformation tensor for the solid phase, and the heat flux: 

«,-I2>* 
a   M 

J1!      al Aa< +-ul'uApa'u"'  +(£sKs+ewKw)8klTk . (5.38) 
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Note that the coefficients G^, H^vLn, Hum, As,ju*> ^ and M* aie not functions of the local 

thermal gradients because a two-variable Taylor series expansion was performed. The remaining 

terms in the stress tensor equations (5.32) and (5.36) depend upon A", which is a function of 

temperature but not of temperature gradient. Based upon these equations the stress field inside 

an anisotropic polymeric system is a function of the local thermal gradients. But inside an 

isotropic polymeric system it depends upon temperature only. This simplifies experiments 

because the anisotropic systems require measurement of material coefficients as a function of 

local temperature only. In isotropic solids both material coefficients and stress field require only 

temperature dependent measurements. In the previous porous media studies the material 

coefficients required determination as a function of the temperature as well as temperature 

gradient at different spatial locations because one variable Taylor-series expansions were 

performed. Similarly, in our heat flux equation, the material coefficients are not functions of the 

strain rate. The strain rate affects heat flux of the anisotropic system only (5.34), but not of the 

isotropic system (5.38). Similar deductions could be made using one-scale thermoviscoelasticity 

theory presented in reference [14]. 

Generalized Darcy 's Law 

Substituting sfk
w from (5.28) and i^ from (5.22) in the momentum balance equation (A. 11) and 

neglecting the inertia and the second order terms in u™', we get: 

W=-(*V),* +(*"'4L<C), +(swHj^r^l +*v*; + 
PW „W „W       ' e ,k—e p 

( r)Aw r)Aw   ■      ^ (5.39) 

The thermal gradient term and the last term in (5.39) are new. We will explain this further in a 

subsequent discussion. 
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Generalized Fick 's Law 

Substitute sfk
Wj +ik

Wj from (5.29) and Q from (5.27) in the momentum balance equation for 

species (A. 10) and neglecting the inertia term to get: 

B&u,J =-£wp JM '* +£ P Jgk
J +(£ P 'CuLKn)^ (5.40) 

This form of Fick's law is similar to that obtained for the colloidal systems in previous studies 

[8]. The last term in (5.40) is often neglected in literature as it is of second order. 

Swelling Pressure 

Bennethum [6] has derived a relation between classical pressure, thermodynamic pressure and 

swelling pressure. This relation can be obtained from a comparison of our choice of independent 

variables with the alternate choice [1], where AJ was considered to be a function of sw, pw,CWj. 

For simplicity, let us write free energies only as a function of the variables required for this 

derivation: 

A; = AJ (sw,ewpWj), AJ = A? (ew,pw,CWj) 

where AJ is the free energy in the alternative formulation. Now, 

dAj=^- 
deM 

7=1 Op 

N       "j 

df'+Yß. dAJ 

J=I £    dp ' 
d£W 

(5.41) 

(5.42) 

dAJ 
dAJ 
d£W 

d£W+^- 

P\C'        dPw 

JL f)Aw 

f,c'> %dC> 
dC> (5.43) 

Compare the coefficients of d£w: 
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dÄ? 
dsM 

_8A; 

P\C"' d£w 
e p ■ 1Ä ew dp"1 

(5.44) 

w _w . Multiply throughout by s wp 

s p —— 
Ö£W 

= S p 
8AJ 

P",C"J de" „w — WJ s p J 

(5.45) 

The terms on the right hand side can be identified as -Pw andpw using (2.13) and 

(2.15), respectively.   The term on the left hand side is the swelling pressure obtained in the 

alternative formulation [1]. Thus, the expression for the swelling pressure is: 

H   8ew (5.46) 
\c"' 

where, the over-bar is used to signify that the swelling pressure definition requires the use of free 

energy, ÄJ, in the alternative formulation. The swelling pressure is measured by keeping the 

density and mass composition fixed and changing the volume fraction of the liquid by for 

example letting the liquid enter or exit the system. The (5.45) becomes: 

-Ww=-?w + pw (5.47) 

or, Pw(sw,swpw') = Vwiew,ewp'')-xw(sw,pw) (5.48) 

where the underlined terms are held constant when evaluating the pressures, but the pressures 

themselves may vary with these variables. 

Recalling that the stress tensors represent the physical stress on the system through the 

momentum equations, and examining the relationship between the stress tensors and the 

thermodynamic pressures [equations (5.20) and (5.22)] we may conclude that the 

thermodynamic pressure is related to the physical pressures of the system when there are 

negligible shear deformations, temperature gradients and fluid flow. Thus, (5.48) states that the 
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thermodynamic pressure of each phase is composed of the classical pressure and the swelling 

pressure. See [6] for further discussion. 

Low's Swelling Pressure Relation 

Low [22,24] conducted extensive experiments on swelling clays and obtained the following 

relation for the swelling pressure, Pap at equilibrium: 

Pap=A^{BISw) (5.49) 

where, A and B are the empirical constants. Achanta et al. [1] obtained the first non-heuristic 

derivation of this relation using the framework of HMT. Here we will derive this relation using 

equations obtained in previous sections after making simplifying assumptions. Consider the 

experiment depicted in Fig. 2, where pure water is in contact with the swelling colloids via a 

semi-permeable membrane under isothermal conditions. The semi-permeable membrane allows 

water to pass towards the colloids but prevents the passage of colloids towards water. Piston 

pressure, Pap, is applied over the porous matrix to balance the swelling pressure.  The colloids 

have a highly layered structure, with solid platlets parallel to each other. Multiplying the 

equilibrium equation (4.13) by pWj and summing the result from j = 1 to N, we obtain: 

f,/iWjpWjSu=Arp9Su-t:. (5.50) 
7=1 

Substitute the expression for ty from (4.4) to (5.50), and divide the both sides of (5.50) by pw to 

obtain the equation for Gibbs free energy: 

G^YS'C-^A?^ (5.51) 
7=1 P 

Taking the differential of this equation in the alternative formulation, we get: 
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-       dAw 

de» 
dew+^- 

öA; 

de» 
+ 

dp 

1  dpw 

dpw+— 
dp» 

pw de" 
PA 

d£w + 

d£w 
dsw + 

dp» 

dp» 

dp 

1 dpw 

dp" 

,-     P   °P 

P' 

dp» 

■dp» 

(5.52) 

since, the definition of thermodynamic pressure, pw, remains the same in both formulations, we 

did not use an over-bar with its representation in (5.52). The chemical potential of the water is 

maintained constant, because the lowered chemical potential due to hydration forces is 

compensated by the increase in applied pressure, Pap. Thus, DGW = 0. This makes the 

bracketed terms in the second line of (5.52) equal to zero. Multiplying the first bracketed term in 

the second line of (5.52) with swpw and using (5.46) we get: 

jr=e"dpW 

dew 
(5.53) 

As shown in Appendix B, at low and moderate moisture contents the pressure, Pw, is small in 

comparison to the swelling pressure, Ww. Therefore, we neglect Pw in (5.48) to obtain: 

p   =—7T   . (5.54) 

In layered clayey soils, due to balance of forces between the applied pressure and the 

thermodynamic pressure of solid and liquid phases we have: 

Pap=pw=ps. (5-55) 

Using (5.53), (5.54) and (5.55) we get: 

dPw 
p w — _e

w    "P 
"P de" 

(5.56) 

For parallel layers of clay platlets the ewcan be written as: 
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w       8W 

e =  (5.57) 

dew       dSw 

—+s 
5s 

(5.58) 

Here it should be noted that Ss'\s an effective thickness since in general some packets of clay 

layers remain unexpanded. Assuming that SS«SW, (5.58) reduces to: 

ds» = *• dSW 

ew     Sw 
(5.59) 

Substituting (5.59) in (5.56) and integrating, we get: 

Pap=Aexp(Ss/Sw) (5.60) 

which is similar to the swelling pressure ec " 

Viscoelastic Effects in the Generalized Darcy's Law 

Let us replace nw in the generalized Darcy's law (5.39) by (5.48): 

Ru VJ" = -[> (p* - r*)]  + ?we w,k + Remaining' 

= (ewirw)k-£wPw,k + R.Ts 

rerms 
(5.61) 

Substituting the expression for pw from (5.12) in (5.61), 

W = (ewäw)  - swr,k - ew (Mew)   + R.Ts 
\              /,/c                                   ^              ' Jk 

= ew,kW
w+£w(äw-r)k-ew(Mew)k + R.Ts 

(5.62) 

The, Ps is small [see (2.13) and (5.46)] in comparison to the Ww (See Append] ix B). Thus, we 

drop the Ps term in (5.62) to get: 
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£ P Sk~e P 
(5.63) 

On the right hand side of this equation the first two terms resemble the Darcy's law equation (7) 

obtained by Achanta et al. [2]. These account for the interaction of the solid polymer matrix 

with the fluid phase, which leads to time dependent swelling. The third term is called 

Brinkman's correction in the porous media literature. It accounts for the viscous resistance to the 

flow of liquid in the fluid boundary layer formed on the surface of the solid. In high velocity 

flows, this term will have significant magnitude, but it is often neglected at low moisture 

contents. The fourth term is novel. It results in flow due to thermal gradients for anisotropic 

fluids. For isotropic fluids this term will vanish. In the earlier porous media studies, the 

coefficient v^mn was a function of Tj. Thus, the thermal gradient effect was neglected when the 

rate of deformation term was dropped. For anisotropic fluids of low thermal conductivity, the 

thermal gradient term could be significant in magnitude even when flow velocities are small. In 

the second line of (5.63) the first term in brackets has been reported by [27,7]. At low moisture 

contents when a few layers of fluid are present, the free energy of the fluid phase is a function of 

the shear strain in the solid phase. Then this term is of significant magnitude. At high moisture 

contents, the solid phase alters the liquid free energy only through normal components of the 

strain tensor and this term reduces to the swelling pressure [27]. The last term in (5.63) is 

nonlinear in E^. It has not been reported before. In the previous studies, this term did not arise 

because an elastic solid phase does not depend upon the rate of strain. This term results from 

interaction of the viscoelastic solid phase with the liquid phase. More insight can be obtained by 

comparing this term to sw{Mew),k and (dA? / dE^E^ k. It appears that the rate of strain in the 
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polymeric matrix would affect the free energy of the liquid phase, which would add a component 

to the flow of liquid.   This term is also related to dA) IdE^ by (3.2).   It warrants additional 

investigation. 

6. Conclusions 

We developed a two-scale theory of swelling viscoelastic systems. At the mesoscale, the solid 

phase was modeled as a Kelvin-Voigt solid and the liquid phase was assumed viscous. Thus, we 

accounted for the relaxation processes within the solid matrix, which have been ignored in the 

previous porous media studies. At the mesoscale, the viscoelastic nature of our system resulted 

from two microscale effects - the relaxation of the solid and the interaction of the solid phase 

with the viscous fluid. We obtained novel equations for the total stress tensor (5.32), chemical 

potential of the solid phase (5.25), heat flux (5.34) and generalized Darcy's law (5.39), which are 

applicable to a large class of materials. The form of the generalized Fick's law (5.40) remained 

similar to that obtained in previous colloidal media studies. With two-variable Taylor series 

expansions, the thermal gradient effects were coupled with the rate of strain tensor of the solid 

phase and the rate of deformation tensor of the liquid phase. This made material parameters of 

the equations involving stress tensor and heat flux independent of the thermal gradient effects, 

and thus their experimental determination becomes easier in comparison to the parameters 

obtained in the previous porous media studies. Additionally, two-variable linearization helps 

make clear distinctions between the stress tensor, heat flux and Darcy's law equations for 

anisotropic and isotropic systems. 
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7. Appendix A. Mesoscale Field Equations 

Here we consider mesoscale balance laws for a vicinal fluid solvating (or partially solvating) the 

solid. These equations were obtained by averaging the microscale laws. Details of the averaging 

procedure are laid out in references [18,3,13]. 

Mass Balance 

The mesoscale mass balance equation for the j* species in the phase a is: 

Daj(eapaj)+£a  aj a = y ßtl +faj (A 1} 

Dt J    fa 

Unlike classical mass balance equation of one scale, the quantities on the right hand side are not 

zero. In multi-scale equations such quantities appear at a higher scale during the averaging 

procedure. These act as a source or sink term. The e" multiplying with p"J also emerged 

during averaging. Similar quantities appear in the laws of conservation of momentum, energy 

and entropy. 

Summing this equation over N components, gives the mass balance equation for phase a: 

Da(£apa)+ £a    ava       Yßea, (A.2) 
Dt U      fa 

where, the phase variables are related to the species variables by: 

pa=^paj (A3) 
7=1 

7=1 

C"J =£— (A.5) 
Pa 
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P2,=Y/el (A.6) 
7=1 

The following restrictions apply: 

5V=1 (A.7) 
a 

2^=0,       Va (A.8) 
y=i 

^eaj+aeßj=0, a*ß,Vj. (A.9) 

The restriction (A.7) implies that the sum of volume fraction of phases in an REV is equal to 

one. The restriction (A.8) ensures that during chemical reactions, the mass lost by one 

component is gained by the other. The equation (A.9) ensures that the mass exchanged between 

the two phases remains conserved. 

Momentum Balance 

The mesoscale momentum balance equation for the j* species in phase a: 

ea 

Summing this equation over the N components, we obtain the momentum balance equation for 

phase a: 

Dt ß*a 

The relations between the phase and the species variables are: 

«=£(£'-/>•'««') (A-12) 
y=i 

u?J=v?J-v? (A.13) 
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7=1 

ßfl
a=fj(

ßfl
a'+ße"Ju^) 

7=1 

The following restrictions apply to the momentum balance equations: 

7=1 

^ + 'eV + af,Pj + aeßjvßj = 0,   a * ß, V/. 

Energy Balance 

The energy balance law for the j* species in the phase a is: 

S°pa< iZHZ—srtivZ -{ßTq'% -eapa>ha> = £ ßQ°' + E° 

Summing this equation over the N components: 

DaEa 

ß*a 

eapa- n,   -SWjt - W),, sapaha = £ ßQ" 
Dl ß*a 

The relations between the phase and the species variables are: 

Ea^C"J(Eaj+-u"Ju"J) 
7-1 2 

«r-Z 
7=1 

Ol 
a,       .a,    a, a, , pa,   ,1     a,    a, \   a, 
l
J+tkl

Juk
i-pJ(EJ+-uk

Juk
J)ul

J 

(A.14) 

(A.15) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

N 

7=1 

7=1 

(A.22) 

(A.23) 

The following restrictions apply to the energy balance equations: 
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y=iL 

*/».    ** 1 
E ' +i, Ju,   +r J(E ' +—u,ut

J) 0,    Vor (A.24) 

"Qaj + ßf?'v? + ßeaj(Ea> +-v?Jv?J) + aQßj + affJvfJ 

+aeßj (Eßj +-vfJvfJ) = 0,      a * ß, V/\ 
(A.25) 

Entropy 

The second law of thermodynamics requires that the evolution of processes must proceed in such 

away that the net internal entropy gained by the system increases. We begin by expressing an 

entropy balance law for each constituent of each phase: 

a „«, &!RL _ (^«y ^ _ £apajbaj = £ ßja, + -at + ^ £"p 
Dt ß*a 

summing the entropy balance equation over the N species: 

nana 

£ p ~7^ {* (Pi>J~£Pb      2J  r  +A ' Ut ß*a 

The relations between the phase and the species variables are: 

N 

>f=Y/ '  7"' 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

7=1 

y=i 

(A.30) 

(A.31) 

Aa=]TAa' 
y=i 

(A.32) 



44 

Restrictions on the entropy balance equations are: 

£(rflV+'T) = 0,   Va (A.33) 
7=1 

ßj>a> + ßeaj rf' + aip> + aep> rf' = 0,  a * ß, V/. (A.34) 

We assume that the system is at local thermal equilibrium, which causes different phases to have 

the same local temperature. The temperature is allowed vary spatially 

Ta' =Tßj =T. (A.35) 

We also assume that the sources of entropy are solely due to heat flux and the body source of 

heat 

tf =Y- (A.36) 

h*J 

baj= — . (A.37) 
T 

A thermodynamic process satisfying (A.36) and (A.37) is called a simple thermomechanical 

process. In the energy balance equation (A. 18) the internal energy E"J is a function of the 

entropy,  rf'.  Since entropy can not be directly measured from experiments, a Legendre 

transformation is performed on E"1 to convert it into the Heimholte free energy, A"J, which is a 

function of temperature 

Aaj = E"J -Trf' (A.38) 

Summing Aaj over the N components, we obtain the inner part of the total Helmoltz free energy: 

A* =£cajA"J'. (A.39) 
7=1 
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Entropy Inequality 

All independent processes taking place inside a body must satisfy the axioms of mechanical and 

thermodynamic admissibility (see Eringen [14]). Equations of conservation of mass, momentum 

and energy ensure that the processes are mechanically admissible. To be thermodynamically 

admissible, the processes must satisfy the second law of thermodynamics. This is imposed using 

entropy inequality, which states that the net rate of entropy generation in the universe is always 

greater than or equal to zero. 

N 

a a   7=1 

(A.40) 

Eliminating ti"1 between equations of energy and entropy balance and simplifying, we obtain: 

a       T     {    Dt 
jx ( N 

Dt 

+?HFf 
„a   N 

a    *    7=1 

+S^{?r+£[-« +(^' +!«X' )PX' 

i   N 

a   7=1 
{ea pa> Aa% + Y.ßP+h' 

ß*a 

*-1     a   7=1 \_ß*a 

4zi'tfv 
2_j e +r 

a  fi*a 

T 4—t *—* 
t>e° 

a   ß*a 

A<z   • CC.S   a.s >   0. (A.41) 
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8. Appendix B 

In this section we prove that the magnitude of Ww is significantly greater than the magnitudes of 

Pw and P5 except at high moisture contents (^-l). First we convert nw [eq. (5.46)] and Pw [eq. 

(2.13)] to extensive variables. 

?w=- 
d(£wpwA?) 

deM 

7^' 
£  P   J 

yw 
v) 

fyw\ 

£  p   ,i \V J 

CB.1) 

w 

Aw 

n  =-s p 
dAJ 
dew 

= -£ 
d(pwA?) 

P'J d£M 
= -£" yw  ' 

"     IT, 
(B.2) 

P'J 

Here, V is not the REV. REV is the averaging volume, which is held constant over time and 

space. Once the intensive variables like density have been upscaled from micro to mesoscale 

using REV, the total mass and free energy can be computed inside volume, V, of size different 

than REV. We take V, which increases proportionately with the whole body. 

In (B.l), the ratio Mw IV is maintained constant and in (B.2) pw is maintained constant 

during swelling or shrinkage. Let us expand the differentials in the numerator and denominator 

of(B.l)and(B.2): 

Pw=- 

dAw Aw 

dV 
V V1 

dVw yw 
  ÖV 

V V1 

VdAw-AwdV 

VdVw-VwdV 
(B.3) 

M* 

M* 
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n   = ■ 

dAw Aw 

dVw 

V vvw 

dvw yw 
  dV 

V V1 

VdAw-—dVw 

V8Vw-VwdV 

p'J 

(B.4) 

p'jr 

With assumption that the solid phase is incompressible at the mesoscale, the total volume 

increase will only be due change in the volume of fluid phase: 

dV = dVw (B.5) 

Substitute (B.5) in (B.3) and (B.4), to get: 

Pw=- 
VdAw-AwdV 
(V-Vw)dV 

VdAw-AwdV 
M* VsdV Mir v ' 

(B.6) 

n   =■ 

VdAw-~dV 
 ew 

(V-Vw)dV 

VdAw-~dV 

VS8V 

p'J 

(B.7) 

P'J 

Comparison of (B.6) and (B.7) shows that at low moisture contents (sw<l) nw will be greater 

than Pw. With increase in moisture content as sw approaches 1, Jiw will asymptotically 

approach Pw.   As Ps = Pw at equilibrium [eq. (4.2)], nw will also be greater than P* when 

ew<l. 
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9. Appendix C. Nomenclature 

Latin Symbols 

Aa> Helmholtz free energy of the j* component in the a phase 

A" Total Helmholtz free energy of the a phase computed in volume V (= AfM" ) 

A" Inner part of the Helmholtz free energy of the a phase 

ba' External entropy source for the j"1 component in the a phase 

b" External entropy source for the a phase 

csy Finger deformation tensor of the solid phase 

C"J Mass concentration of the j* component in the a phase (= p"J I p") 

tfdmn Material coefficient in equation (5.27) 

d% Rate of deformation tensor of the a phase 

pe"J Net mass transfer from the phase ß to the j* component in the a phase 

ßea Net mass transfer from the phase ß to the phase a 

Ea' Internal energy of the j* component in the a phase 

Ea Internal energy of the a phase 

E"J Energy gained by the j* component from other components in the same phase 

ES
KL Lagrangian strain tensor of the solid phase 

E^ Material derivative of the E^ with respect to the solid phase velocity 

E^ Material derivative of the E^ with respect to the solid phase velocity 

g,' Gravitational force on the j   component in the a phase 
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gf Gravitational force on the a phase 

Gw Gibbs free energy 

G™mn Material coefficient in equation (5.23) 

GfciMN Material coefficient in equation (5.17) 

h"J Net external energy source for the j* component in the a phase 

ha Net external energy source for the a phase 

hs
Um Material coefficient in equation (5.20) 

h%m Material coefficient in equation (5.22) 

i,aj Momentum transfer to the jth component due to interaction with other components in the 

same phase 

J/OM Material coefficient in equation (5.21) 

Ky Thermal conductivity tensor of the solid phase 

K% Thermal conductivity tensor of the liquid phase 

K" Isotropie thermal conductivity of the phase a 

M"J Total mass of j* component in the a phase contained in V (= p*1 V ) 

Ma Total mass of the a phase contained in V (= paV) 

p" Thermodynamic pressure in the a phase 

p Total thermodynamic pressure for the particle (solid+liquid) 

P" Classical pressure of the a phase 

P^ Piston pressure applied in swelling experiment. See Fig. 2. 
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Pw Atmospheric or reference pressure 

q"J Heat flux vector for the j* component in the a phase 

qf Heat flux vector for the a phase 

q, Total heat flux vector for the particle (solid+liquid) 

ßQa' Net heat gained by the j* component in the phase a from the phase ß 

PQ" Net heat gained by the phase a from the phase ß 

r"1      Mass transfer to the j* component due to interaction with other components in the same 

phase 

RJ
U      Material coefficient in equation (5.29) 

Ra      Material coefficient in equation (5.28) 

REV    Representative elementary volume 

t Time 

Q       Stress tensor of the j* component in the phase a 

t%        Stress tensor of the phase a 

tu        Total stress tensor of the particle (solid+liquid) 

Terzaghi stress 

Hydration stress 

Ta'      Temperature of the j* component in the phase a 

T        Temperature 

PT"J    Momentum transfer to the j* component in the phase a due to mechanical interactions 

with the phase ß 

'ki 

tsh 
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ßf" Momentum transfer to the phase a due to mechanical interactions with the phase ß 

u"' Diffusion velocity of the j* component in the phase a 

v"J Velocity of the j01 component in the phase a 

v" Velocity of the a phase 

V Volume of the a phase contained in V 

V Sample volume used to compute total free energy and total mass 

x"      Eulerian coordinate in the phase a 

X^     Lagrangian coordinate in the phase a 

Greek Symbols 

8U      Kronecker delta function in Eulerian coordinates 

Su     Kronecker delta function in Lagrangian coordinates 

sa       Volume fraction of the phase a 

rf>      Entropy of the j* component in the a phase 

rf       Entropy of the a phase 

if1      Entropy gained by the j* component in a phase by interaction with other components in 

the same phase 

Sw      Thickness of the water layer between solid platlets. See Fig. 2. 

Ss       Thickness of solid platlets. See Fig. 2. 

K
J
       Material coefficient in equation (5.26) 

As, A.™ Isotropie material coefficients. See equation (5.35) 

A°J     Net entropy production for the j* component in the a phase 
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A" Net entropy production in the a phase 

A Net entropy production in the system at mesoscale 

fi"J Chemical potential of the j* component in the a phase 

p"J Density of the j* component in the a phase 

pa Density of the a phase 

Ka Swelling pressure of the a phase 

tfJ Entropy flux vector for the j* component in the a phase 

<j>" Entropy flux vector for the a phase 

p<j>aj Entropy transfer to the f1 component in the a phase from the ß phase 

ß<j>a Entropy transfer to the a phase from the ß phase 

uum, Material coefficient in equation (5.22) 

Subscripts 

D Dissipative 

eq Equilibrium 

neq Near equilibrium 

k, I Coordinate indices 

Superscripts 

s solid phase 

w water (or liquid) phase 

a, ß General representation of phases 

j A given component of species 
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Special Symbols 

r\Ctj 

—— Material derivative of a function with respect to velocity of j  component in the a phase 
Dt 

— Material derivative of a function with respect to velocity of the a phase 
Dt 

v"'s Velocity of the a phase relative to the solid phase (= v" - v/ ) 

E
aj-a = Eaj -Ea 
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II.   Thermomechanics of swelling viscoelastic three-scale porous media with 

temporal nonlocality 

Introduction 

The swelling colloids exhibit a hierarchy of scales and often there is a distinct scale 

separation. Fig. 1 illustrates a three-scale (micro, meso, macro) system of interest composed of a 

solid-matrix and solvating fluid. The solid matrix and the vicinal fluid (fluid solvating the matrix 

surface) exist as separate phases on the microscale (of the order of microns). The homogeneous 

mixture of solid matrix and the vicinal fluid at mesoscale is represented as a particle, A, in the 

diagram. The particles themselves are immersed in two bulk phase fluids B and C (eg. liquid 

water and water vapor). At the macroscale each constituent in each phase and the phases 

themselves are considered as overlaying continua defined over all space. Most phenomenon 

exhibited at higher scales are a manifestation of interactions taking place at smaller scales. The 

macroscale swelling/shrinkage exhibited by these systems results from the solvation of solid by 

the fluid on the microscale [1]. 

Many methods are available for upscaling information from lower to higher scales [2, 3]. 

We chose to use the hybrid mixture theory (HMT) approach. HMT involves volume averaging 

of equations of mass, momentum, energy and entropy at the microscale to obtain equations at the 

mesoscale. In a three-scale approach, the mesoscale balance laws are further averaged to obtain 

balance laws at macroscale. At macroscale constitutive equations are formulated by exploiting 

the entropy inequality in the sense of Coleman and Noll [4]. 

HMT was introduced by Hassanizadeh and Gray [5, 6] for non-interacting granular 

porous media. Achanta et al. [7], Bennethum and Cushman [8, 9], Murad et al. [10], and Murad 

and Cushman [11-13] extended these ideas to swelling and shrinking systems with multi- 
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constituents where interactions between phases play an important role. However, in all previous 

works with HMT, the solid phase was assumed to be elastic and the liquid phase was assumed to 

be viscous. These studies were either aimed at swelling soil systems [8-10], or were adapted for 

polymeric systems from soil systems [7-9, 14, 15], for which the assumption of elastic solid 

phase does not really hold. The systems exhibited viscoelastic behavior only at the macroscale, 

which resulted from microscale interaction of the elastic solid-phase with the viscous fluid- 

phase. These theories ignored the microscale relaxation processes of the natural clays, which 

arise due to conformational changes in the flexible clay platelets [16]. These relaxation 

processes provide a force term, which affects liquid movement through porous matrix [17-20]. 

This force term plays a fundamental role when the time-scale of relaxation is the same as the 

time scale of the liquid transport. Incorporation of relaxation processes in the definition of the 

chemical potential, stress tensor and balance laws would make them sufficiently general to 

explain both Fickian and non-Fickian types of liquid transport, and general viscoelastic 

deformation. 

In a previous section, we developed a two-scale theory of swelling colloidal media, 

which considered solid phase as a Kelvin-Voigt solid at mesoscale [21]. In this section we 

extend our work by incorporating the third (macro) scale, and by further generalizing the solid 

matrix to a generalized Kelvin-Voigt solid. This will make our work applicable to a large class 

of polymeric and biopolymeric media subjected to a wide range of processes. 

System Description and Notation 

Meso and macroscale variables are represented by Greek and capital superscripts, 

respectively. At microscale the variable volume fraction does not exist, because a spatial point is 

either in the solid or in the liquid phase. In the homogeneous mixture formed at the mesoscale, 
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the volume fraction of a phase is represented as sa. The solid and liquid components of the 

particle are denoted as sA and wA, respectively. At the mesoscale, the sA and wA interact with 

the bulk fluids B and C and the macroscale volume fraction does not exist, because a spatial 

point is either inside a particle, or inside one of the bulk fluids. At the macroscale the particles 

and the bulk fluids B and C form a homogeneous mixture. The macroscale volume fraction of a 

component is represented by sK. The fluids B and wA are of the same type and the fluid C is of 

different type. For example, the fluid B and wA could be considered as water and the fluid C 

could be considered as oil or air. For simplicity, we assume that the interface between the two 

phases is free from thermodynamic properties. Following the axiom of equipresence of 

constituents [22], we assume at the outset that each phase contains the same set of N-constituents 

(some may be at zero concentration). Superscript Kj represents the property of the j* constituent 

in the K phase at macroscale. Hatted quantities, such as LeKj represent property transfer from 

the phase L to the phase K. The hatted quantities like rKj represent property gained by the j01 

constituent within a phase due to chemical reactions. The complete nomenclature is presented in 

Appendix B. We lay out the equations in indical notation using Eulerian coordinates. The 

indices k and 1 represent the coordinate directions and repetition of these indices implies 

summation. The use of capital indices such as K and L with certain quantities represents 

Lagrangian coordinates. The indices k, 1, K and L range from 1 to 3. 

Constitution 

The macroscale field equations are applicable to all kinds of materials and are presented 

in the Appendix A. These equations are closed for specific materials by imposing restrictions on 

the constitutive functions through the axioms of constitution [2] and entropy inequality in the 

sense of Coleman and Noll [3]. 
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At macroscale the solid phase is considered viscoelastic and the liquid phases, B and C 

are considered viscous. We assume that the viscoelastic solid is of generalized Kelvin-Voigt 

type. Thus, the constitutive variables for the solid phase depend upon the material time 

derivatives of the strain tensor from order zero to p. Due to its vicinity to the solid phase, the 

fluid wA has different thermodynamic properties than its bulk counterpart B. Following is the 

list of unknown variables: 

s\£\ p\CK\vf\T,LeK\rK\tK
a\

Lft
K' J^\AK\qf\LQK\EK\r1

K\fiK' 

j = l..N,  K,L = sA,wA,B,CanAK*L. ^.1) 

we consider only two volume fractions as unknowns because the third can be determined using 

(A.7). The mass conservation equation (A.l) corresponds to the unknown C '. The momentum 

(A. 10) and energy (A. 19) balances correspond to vfJ and T, respectively. Additional equations 

are obtained by considering the following variables to be constitutive or dependent: 

A.A    z.B     JKJ       Kj       Kj     Kj    L^K,    ~Kj    LfKj    ?Kj    LQKJ    gKj    ff, 
b   ,&   , si.    ,qt   , if    , »w ,   e    , r    ,   it    ,ti,\s    > ^    »'/ f 2 21 

K, L = sA, wA, B,CandK*L. 
The constitutive variables are considered to be functions of the following set of independent 

variables: 

S , G , £j , £j , 1 ,1 j, 

(») (m) 
sA   fMj    J-ISA     -psA     rpsA       -psA 

P    > »-      > ^KL' ^KL' ^KLJ » ^KLJ» 

P
vA,cwA',v;AM,u:A',di\u;A/, (2.3) 
B   cBj      B,SA       Bj    dB       Bj 

P     5 <-        J  Vl 5 M/      > "JW J Uk,l ' 

C   cCj     CM     Cj   dc     Cj 

where m = 1 to p. In (2.2) and (2.3) the time derivatives are computed by following the velocity 

of the solid phase at the macroscale: 

Dt      dt     '   J 
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(i»)     TV4   Q 

where m represents the order of the derivative. Before upscaling, all independent variables had a 

corresponding equation at the microscale except sK (K = A, B). As eK did not exist at 

microscale, it remains unaccounted after upscaling the microscale equations. This is the closure 

problem, and following Bowen [23], we close the system by postulating that eK is a dependent 

variable. The variables sK and e* account for the liquid-solid interaction at moderate to high 

solvent contents. The liquid-solid interaction occurs through solvation forces, which lower the 

chemical potential at the interfaces in comparison to the bulk liquid [1, 23-26]. This causes 

liquid movement from the bulk phase to the interface, pushing apart the solid, which in turn 

produces swelling. 

The system under consideration is assumed to be governed by single time scale 

dependence on the volume fraction. Therefore, in our list of independent variables we include 

both volume fractions (eA, eB) at macroscale. In such a system the macropores are not in direct 

contact with the surrounding medium and they drain (or absorb) liquid only through micropores. 

The systems of dual porosity type, where both micro and macropores could directly exchange 

fluids with the surrounding medium, are governed by both meso and macroscale volume 

fractions. Such systems were beyond the scope of our current study. 

The E^and Es£, account for the elastic deformation of the solid matrix.  At low fluid 

contents, E^, incorporates relative shear between two solid surfaces separated by only few 

molecular layers of fluid [11, 27]. In a connected solid matrix a macroscopic deformation results 

in a gradient of the strain tensor, which is also captured by the E'^j.  At the macroscale, the 
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(m) 

viscoelastic nature of the solid polymers is captured by E£ , m =1 to p; where (m) indicates the 

order of the time material derivative. The variables land T, account for the conduction of 

thermal energy at intermediate rates of heat transfer and we are assuming local thermal 

equilibrium so only one energy equation is required. The viscous nature of the fluid phase is 

incorporated through the djj, (K = wA, B, C). The term ufj (K = wA, B, C) leads to the viscous 

resistance of the fluid phase to the diffusion of species. For most practical purposes, the 

diffusion of species in the solid phase is negligible. Therefore, ufj is not included in the list of 

independent variables. 

If both LeAj and r*J are zero, the s", p** and£££ cannot be varied independently as 

they are related by the mass balance equation (A.3) and the equation, EKL = xkKxlLdu . 

Similarly, eK, pK and djj (K = wA, B and C) are related by the mass balance equations. To 

allow greater flexibility in variation of these variables we weakly impose the mass conservation 

equations in the entropy inequality (A.38) using the Lagrange multiplier technique [28]. 

furthermore, this will allow making equations applicable to incompressible phases without re- 

exploiting the entropy inequality. We modify the entropy inequality as follows: 

TpAnew=TpAold + 

DK(eKpK) , JC^JC 

K=sA,wA,B,C 

K=sA,wA,B,C j=\ 

Dt 

K  KD
KCK' 

sKpK 

,   „AT „A\,AT V rK r,K LoK 

+ s p V,j-     2-,     £ P    e 

L=sA,wA,B,C 
UK 

Dt 
^{£

KpK'uf% .K    *J L2*i I  *V'L* (2.6) 

L=sA,wA,B,C 
\ IMXA 

+e p Jr ' -C J     2«,     e P    e 

L=sA,wA,B,C 
L*aA 

>0. 
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where TpAold is equation (A.38). The form of the mass balance equations for species [(A.l) and 

(A.4)] was converted from density into concentration representation before substituting it in (2.6) 

. Since the last two rows of (2.6) are independent for only N-l values of j, we select AKfl = 0. 

The axiom of equipresence requires that initially all constitutive variables should be 

expressed in terms of the same list of independent variables until the contrary is proven [22]. It 

can be shown that the Helmholtz free energies are functions of the subsets of the list [29]. 

Additionally, from physical knowledge of the system we know that the Helmholtz free energy of 

the solid phase depends upon pMj and of the liquid phase depends upon p" '. Therefore, to 

save computations we postulate the dependence of the Helmholtz free energies on subsets of the 

list (2.3) as: 

A?=A?tf,s'j,prtC"',E«,E«,...EZ), (2.7) 
<*> 

AT =A;
A
(£

A
,£

B
,T,P»

A
,C

WA
',E£,E£,...E£), (2.8) 

A?=Af(sA,e\T,pB,CB'), (2.9) 

Af=Af(sA,£B,T,pc,Cc<). (2.10) 
All other dependent variables are considered to be functions of all independent variables in list 

(2.3).  The free energies appear in the entropy inequality (A.38) as material derivatives. Using 

the chain rule, the following expressions for the material derivatives of the free energies can be 

obtained: 

Dt       deA deB dT       dp^H     £T 

AT?**     KL     *-*     ("0     KL' 
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dT   '      ''    dpwA '     H  '    jl 
p,AwA p   pjjwA (m) 

Dt       deA        deB dT       dpK H     £T dsA 

+§^L^MeßJ + toLvfMTj +^rvf
MpK

J+YJiKjv?>°ACK\h K = B,C. 

(2.12) 

(2.13) 

deB '     dT   '     •'    dp" M 

To obtain (2.12) and (2.13), we wrote total derivatives with respect to the solid phase using the 

following identity: 

^V=^> + v^ K = wA,B,C. (2.14) 
Dt       Dt 

where, <p is a scalar function.   CK" is a dependent variable due to restriction (A.8). This gives 

rise to the relative chemical potential p ' in (2.12) and (2.13), which is defined as follows: 

,      dAK <2-15) Kj  mOA^_ K = sAwABC        j = \..N. 
H     ecKj 

Additional macroscale quantities of interest are: 

2 dAK 

Thermodynamic pressure    pK = pK —y-, AT = sA, wA, B, C, (2.16) 
dp 

Terzaghi stress t? - ^ ^T<r< (2-17) 

Hydration stress l* - pwA f£r*&*£. (2-18) 
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The Terzaghi stress, t%* is the elastic component of stress in the solid medium and tjjf results 

from physico-chemical forces between the solid and solvent [30]. In the entropy inequality, the 

terms involving u*1  and uf\  have N-l independent variables and one dependent variable 

N 

because, ^pKjufJ = 0. Thus, the following identities due to Bennethum et al. [15] will be 

needed to rewrite these terms as N-l independent terms: 

N-l 

5X'«f'-2X' 
y=i >i 

& -ZJ7Ff" \ 

N N-l ( n
Ki \ N-\( n

Kl 

ZJ
U

U 
Uk,l  - 2-lUkJ     Ukl „KN> ^'    ZJ    „K* 

(2.19) 

(2.20) 

where, Fk
Kj and G^J are the vector and tensor valued coefficients of uf' and ukj , respectively. 

Substituting equations (2.11)-(2.13) in the entropy inequality (A.38), using (2.6) and 

simplifying we obtain: 

TpA = -    £     eKpK 
rdAf      ^ 1   +T] 

K=sA,wA,B,C 

~{sAp 

{dT J 

.A  * dA? ,   , ^ 8A;
A
 , j, „B dA? 

de deA deA 

.c jc oAj +e-p- z^-X^p^-Ä^p^ +Acpc 

de 

A ^ W . ,A  «, dAf , j. nC dAf 
e p 

de1 ■+e p 
de1 •+e p 

de1 •A  p   +Ä  p 

~*l P _L    1*     IA* 

K=sA,wA,B,C        V,     A7 
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+£ 
N \ 

+sA      tseA      tshA   .-ST r.sAj,.s<ij,.sAj   ,   ISA    sAe       ysAysA 
'*/ ~tu ~tu + 2-*P   *   '        P   u    K<k L<i 

■hsA 

£ „&4  oAj     t   ^WA OAj 
wA 

(m) + P 
sA 

f N 

K      öEKL 

(m) 

(m+1) 
l?sA 

^ 
u, k,l 

„A -.wA -e p 

K=sA,wA,B,C 

WA 8A dA)     A 
—-r£ J + 
deA 

i{^+£[pV'(^4M?,,?)"*¥fi 

+-^r/? .'+2^   c./  +~^E^ 
p 7=1 ^JO, 

JV-1 

+
 1U~~WEKLJ- „A „wA y£ P   h    LA    c.' 

=1 a -psA 
KL 

n=ldE\ 
„A _Wi4 £ p y-i 

Mv4,a4 

- z *V 
K=B,C fo OS \ ÖT ) L~sA,wA,B,C 

N-l 
:KjrKJ -JL- 

N-l 

+JLZrP J+ZJP  
C

J —FTF(
£
 P )J~L

ä
  

CJ 
pK M £ P y-i 

( \ r 

.KM 

N-l 

K-*sA,wA,B,C 7=1 

AT     KI -£   p ' I  % Lf-Kj+i*. 

L=sA,wA,B,C 
\ L*K 

+ £   P ' S     LT, L'rKf j. tKi +i; 
L=sA,wA,B,C 

\ LmK 

-[«V' K' -*0)], -«*<? [4-] +(«V'), *'- 
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-    E E     £KpKLeK\Af+-vfMvfM+XK-YJX
K'Ck 

K=sA,wA,B,C L=sA,wA,B,C \ ^ >=I 

(2.21) 

£=£4,Wi4,£,C  LmsA,wA,BjO j=\ 

where, f^, (a = s, w) implies £^. We used AK" = 0, while writing the last two rows of (2.21). 

If the solid phase had been assumed to be elastic, the terms in the 7th row of (2.21), would have 

been grouped as a coefficient of d%.   However, since we are modeling the solid phase as 

viscoelastic, d„ was converted to the independent variable E^ using the equation 

jsA   f?sA \rsA    y-sA 
akl   -^KL-A-KJc-A-Lj- (2.22) 

(P+1) 

Non-Equilibrium Relations 

In the entropy inequality (2.21) the variables f, pK, CKj, tu and ufj are neither dependent nor 

independent. They can vary arbitrarily. To satisfy the entropy inequality for all processes, the 

coefficients of these variables must be zero. This leads to the following non-equilibrium 

equations: 

e p 
K=sA,wA,B,C 

jAT _P 
A     — 7T, 

rdAf 
+ rjK   =0 

8T 

K = sA, wA, B, C, 

AKj=JiJ,       K = sA,wA,B,C, 

dE\ sA 
KL 

(P) 

3££ 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

sA, 

tf' -j^ti" = P* {ASAj -** -T )** <3-5> 
Equation (3.1) implies that the sum of terms over K phases is zero, however in accordance with 

the classical thermodynamics of one phase we make the following assumption: 



68 

,_a£     K = sA,wA,B,C (3-6) 
dT 

(?) 

For single-phase viscoelastic solids p"(dA? /dE^) = 0 [22]. Such a conclusion cannot be drawn 

for multiphase systems, where viscoelastic solids interact with vicinal liquid, because in (3.4) 

dAJA IdE^ is also involved. 

In (3.5) we used (3.3) to replace k**1 with p. '.  In the subsequent manuscript, we will 

use (3.2) and (3.3) to replace AKj and AK, with p ' and pK IpK', respectively. 

Equilibrium Restrictions 

At thermodynamic equilibrium the following variables are zero: 

(m) 

e\s\E^dK
uyk'J,TJ,vfM^f1^eK' (4.1) 

here,m= 1 top+l;j = 1 toN-1 for u*j,u*J, andj = 1 toNfor LeKj. K = wA, B, Cfor d£, and 

K = sA, wA, B and C for other variables. The list (4.1) does not contain rKj because it requires 

the equations of chemical reactions, which we have not incorporated. At equilibrium the entropy 

reaches its maximum value and the net generation of entropy, A, attains a minima. Thus, 

3A/cbc = 0 and d2A/dxdy>0. Where x and y are the variables in list (4.1). We obtain the 

following results: 

,y^+fy^+ey^L+//^L-/-^+/=o) (4.2) 
de de de de 

^f^V'f^Vf^Vff/^-O, (4.3) 
t^-p^+tf+C (4.4) 

P*^r + PwA^h- = 0,      m = l..p, (4.5) 
dE£ dE^ 

tu=-pKöu,   K = wA,B,C, (4.6) 
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% -El-ft = pK< [ä
K

> -A
K

» -M
KJ

 )<?„,     K = wA, B, C, 

K=sA,wA,B,C 

2  ,yf =-fv^,v//^^+/^, 
L=sA,wA,B,C dsA de" 

K = B,C, 

X   sApwALfl
wA=-eApwA dA) vA 

A „wA uAj        a     ,   „wA „A 

L=sA,B,C 

A 
S"J-£"P""-TTS J+P   e J 8sA deB 

-*V^^-*V'E%<,, K = B,C, 
dE\ KL ™=1 a tr*A 

KL dE 

£   p ' 

r \ 
LrpKj CAT £   *?■+!,* 

L=sA,wA,B,C 

— e p ' 
( \ 

LrpKN 'KN 

) 
I  LfrN+i> 

L=sA,wA,B,C 
J 

pKj {sKpK')i-[sKpK>[AK' -AK
»)\sKtK

u» 
fpM 

K = sA,wA,B,C, 
J      N-l ,L      N-\ 

Af + P-.-f^C^ =A'[+2T-YJuLjCL>, K,L = sA,wA,B,C,K*L, 
P       y-i P      y-i 

~sAj       ~wAj       ~Bj       "~Cj 
ju    =ju     =n   =n 

Removing the Nth component Dependence 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

In classical Gibbsian thermodynamics, when extensive variables such as number of molecules 

are used as independent variables, the species equations do not depend upon the N component. 

However, in mixture theories when concentrations of species are used as independent variables, 

the resulting equations become a function of the N* component. To reproduce classical Gibbsian 

results we follow [31] and choose the equilibrium chemical potential of the N* component 

appropriately. We take 

/u^öu^A^Su-^,  K = wA,B,C, 

+sAv +seA 

Substituting (4.14) in (4.7) we get: 

shA 
kl_ 

P*4 

(4.14) 

(4.15) 
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ftKjSu=AKjSu-\-t  K = wA,B,C, 
P ' 

(4.16) 

Similarly, by substituting (4.15) in (3.5) we obtain: 

sA, r. AsA, r. t/j *    ItseA   i fshA\ 
P J#ki=A   Su zr+-j*(tu  +tki )• (4.17) 

Multiplying (4.16) and (4.17) by CKj, summing over N species and using expressions for f£ 

[(4.4) and (4.6)], we retrieve the equation for Gibbs energy for the phase K: 

(4.18) 
N 

GK=fcKjf'=Af+£T,  K = sA,wA,B,C- 
M P 

Equation (4.13) says that the relative chemical potential of species coexisting in different phases 

is equal at equilibrium. However in classical thermodynamics, the absolute chemical potential of 

species present in various phases is equal at equilibrium. To obtain this later result, we rewrite 

(4.12) as 

P M P 7=1 

K,L = sA,wA,B,C, K*L, 
and substitute (4.18) in (4.19), to obtain 

pK» =nL»,     K,L = sA, wA, B,C,K* L, 
Finally, substituting (4.20) into (4.13), we obtain the classical result: 

sA, wA, B, C, 

To remove N component dependence from (4.11), sum this equation from j = 1 to N 

(4.19) 

(4.20) 

(4.21) 

eKpK     £     X-eKP 
L=sA,wA,B,C 

L*K 

N 

£     Lf,K»+il
K» 

L=sA,wA,B,C 

f   f\ 
YpKj{eKpKj)-(sKpK4)rs^»  -^    + (*V^"),' (4.22) 

K = sA,wA,B,C, 
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Here we used £Lf/° = Lf,K and Yj,K> =0, since at equilibrium uf1 = 0.  Using (2.8)-(2.10) 

compute Af, as follows: 

AW A 
Al J- 

dA] wA 

dsA ■£ J + 
dA) 
de1 

wA 

,+dS^%p"'>+lr'c~<</+ dT   •'   dp 

OA-1      rsA     , V OAI      ysA 

8E] 

(4.23) 

sA 
KL 

T?sA     , V"1 u/rl       r-sA 

KL 3E 

Af     ^£*J+^£°J+^Tl+^pK,l+
N£~MKjCK<J,  K = B,C. (4.24) 

deA    '    de ui vp 7=i 
LrpK Substitute Af,, (K = wA, B, Q and LT,   [eqs. (4.9), (4.10)] in (4.22) and simplify to get: 

£   p 2   "f^+if» -(fV);/H(///*)( 
(4.25) 

*>*"     _£ 
K \ 

S t, 
"   If*) 

= 0,   K = wA,B,C, 

Finally, substituting (4.25) in (4.22) and reversing one step in derivation, we obtain: 

£   p ' 
LrpKj       ?AT = (£KpKj)iM

Kj-{£KpKjAKj)i,   K = wA,B,C. (4.26) 

/ 

2 i«.+r> 
iA,wA,B,C 

UK 

Near-Equilibrium Relations 

In the entropy inequality, the coefficients of variables becoming zero at equilibrium [list 

(4.1)] are functions of these variables.   For example, the coefficient of T, is a function of 

remaining variables in the list (4.1). To satisfy the inequality, these coefficients are linearized 

using Taylor series expansion to form positive quadratic terms. Because of truncation, the 

results hold only near-equilibrium. In the previous section we have clarified the linearization 

procedure within the context of hybrid mixture theory. 
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Here, we perform one term Taylor series expansions of the coefficients of all variables in 

(«) 
the list (4.1) except for the coefficients of TJtE£ and djjj, where we perform a two-term 

expansion.   To obtain thermoviscoelastic and thermoviscous effects we perform a two-term 

(m) 

linearization around T, and E^L for the solid phase; and 7} and d^ for the liquid phase.  The 

resulting linearization coefficients are a function of the remaining independent variables listed in 

(4.1). 

Thermoviscoelasticity 
(m) 

We linearize t% and qf about T, and E£. Let, 

neq 

( N \ 

2tf' 
W->        ) 

A.SA    | jSsi 

— eq'kl   + Dlkl (5.1) 

where, the equilibrium part is given by (4.4). Let us denote the solid phase coefficient of T, by 

or- 

Q?=q?+Y, 
>i 

i 

2 k    "  . 
(m) 

sAi    sA,       .sAi    sAf 

P 'Ui'-tu'Uk' (5.2) 

Substituting (5.1) and (5.2) into the T, and Es£ terms of the entropy inequality (2.21), we get: 

!     fSA ysA   ysA -hsA      A X ' 
DlaAKj<.AL,lC'KL      b    Z-l 

^sA   "Aj       |       wA OAj 

\ 

(m) + P 
(m+l) A 

EZ+j-QfT^O (5.3) 

KL J 
(m) 

Notice that in (5.3) upon linearizing Dt% appears as a linear function of E^  whereas AfA 

(m) (m) 

appears as a nonlinear function because linearization is performed on dAfA IE^ • If E^ = 0 and 

(m) 

T, = 0, then dA?A /E?L = 0 and QsA = 0. By linearizing we obtain: 
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(») P „A V"l 

t*A _ v a»    F*
4
 x*4 x*4 

Dlkl   - ZJ   UKIMN ^MN xk,K*l,L 

£~     sA 
J 

m=\ 
Qi   -KUTJC+ZJJ{CIM

X
I,KEn, 

+ HumT,m 

(m) 

-'LM 

(5.4) 

(5.5) 

(m) 

where G^, is the coefficients of 111th time derivative of strain rate (£jjj,).  The coefficients 

<%L> Hl. ^« ^ ^ are not functions of £^ and T,. G^ is a fourth order positive 

semi-definite tensor responsible for stress dissipation due to relaxation processes within the solid 

phase. H£, and J^M are third order tensors. K$ is the second order positive semi-definite 

tensor representing the thermal conductivity of the solid phase at macroscale. The HUm term 

causes thermal gradients to affect the stress field inside an anisotropic solid phase. Because of 

the JÜw term, heat flux arises inside an anisotropic solid phase due to the strain rate. Given that 

the third order tensors are zero under the full orthogonal group of transformations, HUm and 

J%M 
would vanish for the isotropic solids [32].  Due to symmetry of the stress tensor and the 

strain rate, the third and fourth-order coefficients satisfy the following symmetry relationships: 

sA sA        _r,s£ 1 

rjfsA     JJsA 
nklm * "/fen' 

sA sA 

JKLM
=

''KML>   tn = l..p. 

(5.6) 

By substituting (5.4) and (4.4) in (5.1); and (5.5) in (5.2), we obtain the following near 

equilibrium equations: 

N Ä P 
tsA nsA<-     ,fseA,tshA      V /l*4'M   > M   ' 4-V 
tkl   =-P    dkl+tkl    + tkl    ~2^P     Uk   Ul      +2J 

;=1 m=l 

N 

J=1L 

.sA,    sA, jsA,       1     sA,    sAi 

2 

sA 
(m) 

sA   ^.sA  „sA fLm fSA SA        SA + HklmTm> 

,5A*      S/i, I        jäHi      ,      * aAi      3/1/ tjuj -\ A ' +-uk
Juk

J sA,   sA, 
P   '"/' 

-E-   _sA 

m=l 

(m) 

+ Kkl \k + 2_j JKLMX1,K ^1M • 

(5.7) 

(5.8) 
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Thermoviscous Effects 

We can similarly, linearize about d% and T, to obtain the following near-equilibrium 

equations for t% and qf: 

*S =-PKSu+vlndl+HK
UmTm-Yjp

K'uK
k>uf>, 

K = wA, B, C, 

K = wA,B,C- 

(5.9) 

(5.10) 

Here, Uymn is a fourth order, positive semi-definite viscous dissipation tensor. Similar to the solid 

phase, the third order tensors, H^m and Gfm„ introduce the cross-effects of the temperature 

gradient on the stress tensor, and the rate of deformation on the heat flux. For isotropic fluid 

phases H^m and Gfmn disappear. Due to symmetry of the stress tensor and the rate of 

deformation tensor, the o^m„, H^m and Gfmn satisfy the following symmetry relationships: 

Vklmn * °lkmn ~ Vklnm 

TTK    _ TTK 
nUm ~ nlkm (5.11) 

GL=GL, K = WA,B,C 

Remaining Near Equilibrium Equations 

To obtain a more general equation for the chemical potential of a species in the solid 

phase, we may choose the near-equilibrium chemical potential of the N* component in a very 

special way. We take 

ß
sA«8ld=AsA»ökl 

.sAN 
lkl 1 

,sA 
P    "        P 

Substituting (5.12) in (3.5) we obtain: 

tseA   , fshA   , V"1 (~i „ r<sA      sA     sA   ,   rrsA f 
lkl    +lkl    + ZJ ^KLMN ^MN xk,Kxl,L **" n Um1 ,m (5.12) 
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p J    P 

(m) 

tf +C +2^™E&*&jfi +/££.  . (5.13) 

P       ^ («) 

In the solid-phase chemical potential (5.13), the term YJ
G

ZIMN 
E

$N 
X
W

X
U 

has not been rePorted 

m=l 

in previous colloidal-media studies. This term implies that the solid-phase chemical potential of 

the swelling systems is a function of varioust orders of strain rate. 

Performing singe-variable linearization about sA,sB,ukj, 
leKj,vk

M anduk
J, we obtain 

the following near-equilibrium equations: 

de" 

tKj 

P ' 

HL> -pK' =K
LKJLeKj --u"'u"J +-uf<u?>, K,L = sA,wA,B,C, K*L, 

Z„K „K Lrp *>A _      nwAwA,sA   ,      wA   A s p    Tk    =-Kkl v,      +p   e ,k 
L=sA,B,C 

-£APWA BAf £A.dA£n.dA£EsA  +f a^ P 

f XAK 
K ^K e p    Tk   =-Kklvl     +p s ,k-E p 

L=sA,wA,B,C 

KL J 

K ÖAf   A     dA     B 
—~r£,k +—Jjr£,k 
deA deB 

K = B,C, 

j ^''(^+t*o--*^i+Ar/('c/'iri),-('r^r'i 
L=sA,wA,B,C 

L*K 

K = wA,B,C. 

The coefficients MA,MB,Ck]
J

mn,tcLKj,1$ andR*'  are the linearization coefficients 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

of these 

equations.   We did not linearize about uf' because in our system solid-phase diffusion was 
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sAi 
assumed negligible so that uk' was not an independent variable. Hence, the coefficient of uk' 

sA, 
cannot be a function of uv'. 

Total Stress and Heat Flux 

The total stress tensor and total thermodynamic pressure at macroscale are obtained by 

summing over the solid and the liquid phases [30]. These are defined as: 

'*/ =    Z    eKt» 
K=sA,wA,B,C 

P=   Z   *V 
K=sA,wA,B,C 

Substituting (5.20) and (5.22) in (5.30) and using (5.31), we obtain: 

(5.21) 

(5.22) 

tu=-pSu+eA 
tkl    +tkl    + / A ^KLMN Eg. Xk.KXI.L 

m=lV 

+ -"«rn-Tm 

+   I   sK{»LndL+tlZmTm). 
(5.23) 

K=wA,B,C 

Here, the second order term Z/7 'uk'uk
J was neglected because the diffusion velocities are of 

sA (m) 

small magnitude. In the total stress tensor equation (5.32), the G^ E^ xfKx^L term accounts 

for the relaxation processes within the solid polymeric matrix.   In the previous porous media 

studies [5-10,12], this term could not be obtained due to the assumption of an elastic solid phase. 

The total heat flux of a particle can be taken as [33]: 

1,=     Z     *V (5-24) 
K=sA,vA,B,C 

Substituting (5.21) and (5.23) in (5.33) to eliminate qf and qf we obtain: 

K=sA,wA,B,C   7=1 

tki'< AK^]-uK
k'u

K
k' 

sA 

p 'V +   Z   ***Ä + 
K=sA,wA,B,C 

(m) 
(5.25) 

Z^<^ + Z £KGLd, 
K=wA,B,C 

K 
nrn' 

m=l 

Given that diffusion velocities are small, the third order term in u,' can be neglected. 
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Isotropie Stress and Heat Flux 

If the solid and liquid phases have isotropic properties, the third order tensors disappear. 

The second and fourth-order coefficients follow these relations [32]: 

K*=KKÖU,   a = sA,wA,B,C 

GKLMN = Ä " SKL5MN + M " ($KMSLN + SKN#IM ) (5-26) 

»Ln=l
KSklömn+nK(öhnöln+SknSlm),  K = wA,B,C 

Substitute (5.35) in (5.32) and (5.34), and simplify to obtain the following equations for the total 

stress 

tu=-pSu+eA tseA   ,  fshA   ,   \ ' 
'kl    + lkl    +2-1 

(m) (m) 
■?sA -,sA   „sA A" EMM 

cu   + 2/^ " EKL xkKxIL 

S   ^(^^l+2^4), 

+ 

K=wA,B,C 

-sA~      sA     sA 
= Xk,KXl,K > 

(5.27) 

(5.28) 

(here csfl is the Finger deformation tensor for the solid phase) and the heat flux 

K=sA,wA,B,C j=\ 

*KJ    KJ 

2 
sA       sA 

au:j -i A*
J
 +^u;>u;' \p~ju?j +     X     eKK% 

K=sA,wA,B,C 

(5.29) 

Note that the coefficients G^.^.y^ #1, Xm,n",AK and// are not functions of the 

local thermal gradients because a two-variable Taylor series expansion was performed. The 

remaining terms in the stress tensor equations (5.32) and (5.36) depend upon Af, which is a 

function of temperature but not of temperature gradient. Based upon these equations the stress 

field inside an anisotropic system is a function of the local thermal gradients. But inside an 

isotropic system it depends upon temperature only. This simplifies experiments because the 

anisotropic systems require measurement of material coefficients as a function of local 

temperature only. In isotropic solids both material coefficients and stress fields require only 

temperature dependent measurements. In earlier works the material coefficients were a function 

of the temperature as well as the temperature gradient at different spatial locations, because one 
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variable Taylor-series expansions were performed.   Similarly, in our heat flux equation, the 

material coefficients are not functions of the strain rate.  The strain rate affects heat flux of the 

anisotropic system only (5.34), but not of the isotropic system (5.38). Similar deductions could 

be made using one-scale thermoviscoelasticity theory presented in reference [22]. 

Generalized Darcy 's Law 

Note that Darcy's law used in porous media literature is often called Fick's law in 

polymer science literature. Here we let Darcy's law apply to flow of fluid phase and Fick's Law 

to transport of species. By substituting      £     Lfk
K [eqs. (5.28), (5.19)] and /« from (5.22) in 

L=sA,wA,B,C 
L*K 

the momentum balance equations [(A. 12), (A. 14)], and neglecting the inertia and the second 

order terms in u,', we obtain 

( AA"* AAwA P\AvA 

\ 

K^<Al), +(^Ä),, +*VV', 
P    piAvA      ("0 

*-dQL      J 

(5.30) 

(5.31) 

+(^A)/+//^,   K = B,C 

The thermal gradient term and the last term in (5.39) and (5.31) are new.  We will disucss this 

further subsequently. 

Generalized Fick 's Law 

Substitute       £     ^k' + i*y  from (5-29) and fu    from (5-16) in the momentum balance 
L=sA,wA,B,C 

equations for species [(A. 10), (A. 13)] and neglect the inertia terms to get 

l£'uf> =-sK
P

K>nK>*+sKpK>gl> +(*V<)>£,)/. (5.32) 
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This form of Fick's law is similar to that obtained for the colloidal systems in previous studies 

[30]. The last term in (5.40) is often neglected in literature as it is of second order. 

Swelling Pressure 

Swelling occurs due to liquid transport from the bulk phase, B, to the particles, A. 

Derjaguin and Churaev [34] defined swelling pressure at mechanical equilibrium to be the 

difference in pressure between the particle interlayers and the bulk fluid exchanging fluid with 

the interlayers. Following this definition we take swelling pressure as: 

it" - 
( MT     -M 

deA e'p^^r-p^l-p8 (5.33) 

Achanta et al. [7] showed that (5.33) leads to the empirical swelling pressure relationship of Low 

[1]. This relationship is: 

nw=Aexp(Ss/Sw), (5-34) 
This equation indicates that swelling pressure decays at an exponential rate with increase in 

spacing between parallel solid platlets (or liquid content of particles). 

Eliminating eApwAdAJA ldeA between (5.33) and (5.14) we obtain: 

7c»=p"A-pB-pc-MAeA. (5.35) 
Here we assumed that 

^- = 0 
deA 

(5.36) 

f)AB      r)Ac 

£2_ = £2L = 0. (5.37) 
deA    deA 

Assumption (5.36) holds except at the lowest vicinal liquid contents. At very low vicinal liquid 

content, the layers of liquid molecules will exert stress on the molecules of the solid phase, 

which would make the free energy of solid phase a function of the liquid content.    The 

assumption (5.37) is true for unconfined bulk fluid phases. This assumption could also be made 
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for a bulk fluid phase, which is free to move inside a connected porous matrix. Notice that the 

first three terms on right hand side of (5.35) relate swelling pressure to thermodynamic pressures 

at thermodynamic equilibrium. MAeA is the near-equilibrium term relating time dependent 

swelling of the matrix to the swelling pressure. This term is similar to Thomas and Windle's 

[35] equation (9), used for relating swelling pressure to the Case-II sorption of solvent in the 

polymeric matrix. 

Darcy's Law - Swelling Pressure Relationship 

Eliminating sApwAdA;A ldeA and pwA from (5.30) using (5.33) and (5.35), we obtain the 

following equation for the flow of vicinal fluid: 

R>rM=-{eA*w), - £A {MASA )k (sAu:A
nd:A \t+(SAH-X ),+*va 

„A„wA     0A1      „B      ,   OAj      JJSA      ,  y OAj       F^ 

wA 
k 

(5.38) 

On the right hand side of this equation the first two terms resemble the Darcy's law equation (7) 

obtained by Achanta et al. [14]. These account for the interaction of the solid matrix with the 

fluid phase, which leads to time dependent swelling. The third term is called Brinkman's 

correction in the porous media literature. It accounts for the viscous resistance to the flow of 

liquid in the fluid boundary layer formed on the surface of the solid. In high velocity flows, this 

term will have significant magnitude, but it is often neglected at low fluid contents. The fourth 

term is novel. It gives rise to flow via thermal gradients for anisotropic fluids. For isotropic 

fluids this term will vanish. In the earlier porous media studies, the coefficient ü^lm„ was a 

function of T,.  Thus, the thermal gradient effect was neglected when the rate of deformation 
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term was dropped. For anisotropic fluids of low thermal conductivity, the thermal gradient term 

could be significant in magnitude even when flow velocities are small. 

In the second line of (5.38), the first term in brackets appears only when three phases (A, 

B, C) are present at macroscale.  It causes flow of vicinal fluid due to gradient in bulk phase 

liquid content.   The second term in brackets has been reported by [11, 27].   At low moisture 

contents when a few layers of fluid are present, the free energy of the fluid phase is a function of 

the shear strain in the solid phase.  At high moisture contents, the solid phase alters the liquid 

free energy only through normal components of the strain tensor and this term reduces to the 

swelling pressure [11]. The last term is nonlinear in various order time derivatives of strain rate. 

It couples the effect of near-equilibrium relaxation processes with fluid transport when the time 

scale of relaxation is similar to the time scale of transport. Such coupling has been suggested for 

predicting the non-Fickian transport of fluids in polymeric materials [17-19].    Thus, our 

equations are sufficiently general to describe both Fickian and non-Fickian transport of fluids in 

porous polymeric media. Using single scale theory of continuum thermodynamics Lustig et al. 

[20] obtained a similar effect of polymer relaxation on diffusion velocity of low molecular 

weight fluids.    To our knowledge, this is the first attempt to obtain this coupling at the 

macroscale in a three-scale theory of swelling porous media. 

Conclusions 

We developed a three-scale theory of swelling viscoelastic systems. At the microscale, 

we considered interaction of the vicinal fluid with solid matrix. At mesoscale, the homogenized 

vicinal fluid and solid phase interact with two bulk fluids. The mesoscale particle and bulk 

fluids form a homogeneous mixture at macroscale.    The solid phase was modeled as a 
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generalized Kelvin-Voigt solid and the liquid phases were assumed viscous. Thus, we accounted 

for the relaxation processes within the solid matrix, which have been ignored in the previous 

polymeric porous media studies. The macroscale viscoelastic nature of our system resulted from 

two micro and mesoscale effects - the relaxation of the solid on the microscale, and the 

interaction of the solid phase with the viscous fluid at mesoscale and bulk fluids at macroscale. 

We obtained novel equations for the total stress tensor (5.23), chemical potential of the solid 

phase (5.13), heat flux (5.29) and generalized Darcy's law for vicinal fluid (5.38), which are 

applicable to a large class of porous materials. The generalized Darcy's law for vicinal fluid 

incorporated the effect of stress relaxation on transport of fluid. Literature suggests that such 

coupling between stress relaxation and fluid transport can describe both Darcian and non- 

Darcian phenomenon [17-20, 35]. The form of the generalized Fick's law (5.32) remained 

similar to that obtained in previous colloidal media studies. With two-variable Taylor series 

expansions, the thermal gradient effects were coupled with the rate of strain tensor of the solid 

phase and the rate of deformation tensor of the liquid phase. This made material parameters of 

the equations involving stress tensor and heat flux independent of the thermal gradient effects, 

and thus their experimental determination becomes easier in comparison to the parameters 

obtained in the previous porous media studies. Additionally, two-variable linearization helps 

make clear distinctions between the stress tensor, heat flux and Darcy's law equations for 

anisotropic and isotropic systems. 
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Appendix-A 

Here we present the macroscale balance laws of Bennethum and Cushman [8], which 

were obtained by averaging the mesoscale balance laws.   The equations for bulk fluid phases 

have similar form at meso and macroscale. 

Mass Balance 

The macroscale mass balance equation for the j* species in the particle is: 

—<£-£-l+£*p
aAJvy =     £    e

ApaA> LeaAj + eApaAjfaAj, 
Dt ' L=sA,wA,B,C (A.l) 

L*aA 

a = w,s, j = l..N 
A —A 

Here, the macroscale variables were obtained by volume, ( ) , or mass averaging, () , the 

mesoscale variables in the phase A as shown in the following set: 

i \ A  A 

paA^ls°pa>) .vf^-v?  , 

LeaAj =   A  LA ,   J ^^(v4Ly-v^)n>,   L = B,C, a = s,w (A.2) 

A .         A 
PAeaA> m»?'  , FaAj =raj  ,a,ß = sA,wA,  a*ß. 

Here, |äV| is the volume of the macroscale REV, AA^ is the surface area of interface between 

the particle and the bulk fluid, vk\AL is the velocity of the j* component at the particle-bulk fluid 

interface and nA is the vector normal to the particle. 

Summing (A.1) for N species yields: 

\aA r   A „aA 

~Dt 

For the bulk fluid phase the mass balance equations for the species are: 

T\aA (   A    aA \   
D   {£ p   ) + eApaAv?f =     J     £ÄPaA K*aA> a = w>s- (A-3> 

K=sA,wA,B,C 
K*aA 

DJ(£ pl)+sKpK'vfj=     Y    eKpK>LeK<+eKpK'rK\ 
Dt ' L=sA,wA,B,C (A.4) 

L*K 

K = B,C, j = l..N 
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Summing (A.4) for N species, we get: 

D {S P K£
Kp% =     £    eKpKLeK,  K = B,C. (A.5) 

L=sA,wA,B,C 
L*K 

Relationships between the macroscopic species variables and their bulk counterparts are: 

7=1 

N 
(A.6) 

eK =Yf     *   > L*K, L,K = sA,wA,B,C. 
7=1 

The following restrictions apply: 

(A.7) 

(A.8) 

(A.9) 

^+£*+£C=l 

£c*'=l,   2/?%^=0, 
7=1 7=1 

sLpL>KeL'+£KpK>LeK'=0, 

K*L, K,L = sA,wA,B,C, J = l..N. 

The eaA arising in (A.9) implies eA. 

Momentum Balance 

The macroscale momentum balance equation for the j* species in the particle is: 

T^aA,   aAj   

sV^^-^-— (eXAj)>-£APaAjg?Aj=    I    £
ApaA'LfrA<+eApaATJ, ,A1A, 

Dt ' L=sA,wA,B,C (A. 10) 
LtaA 

a = w,s, j = l..N 
The macroscale variables in (A. 10) are related to the mesoscale variables by the following set of 

equations: 

-A A 

nAda,  L = B,C Lf,aA, _ 1 C     a   t
aJ   .  n

aJ v
aJ    (v\       -V

aj\ 1 A    aA.[A   I     J   £      lkl   +P    Vl       1V*U       V*    I 
e P yNM'      L v      7        / 

(A.11) 

-A A"   .    .        -—A       A-—A 
flAfaAJsPT«j     +PS*j    vaj ™,mf>     +fj    v«7        ,   a,j3 = sA,WA,   CC * ß. 

Summing (A. 10) from j = 1 to N, we get momentum balance equations for the solid and liquid 

phases present in the particle: 
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Af}aAlJyL__{£AtaA)k_£ApaAgaA=        £       £ A paA LfaA^    ff = ^ g <AU) 
\aA   a A 

~Dt 

For the species present in the bulk fluid phases: 

L=sA,wA,B,C 
LtaA 

Dt L=sA,wA,B,C (A. 13) 
L*K 

K = B,C, j = l..N 
Summing (A. 13) from j = 1 to N, we get: 

^V^-(^),*-*VV=     Z     sKpKLfl
K,K = B,a (A.14) 

Dt 

Relation between the macroscopic constituent and the bulk variables are: 

L=sA,wA,B,C 
UK 

'£=£(#-/xVo, (A.i5) 
7=1 

«f'-vf'-vf (A.16) 

gf^C^gf1,   "ff^f?',     L,K = sA,wA,B,C, L*K. (A.17) 
7=1 7=1 

Restriction upon the source and sink variables are: 

7=1 

K,L ...C,  K*L. 

The eaA arising in (A. 18) implies sA. 

Energy Balance 

The equation of conservation of ener ihe j* species in the particle is: 

..aA, nCcA, 

Sp«A> H-JL sACva*> -(eXAj)j -£ApaAjhaAj = 

(A.18) 

£    eApaAj LQaAj + eApaAjEaA>, a = w,s, j = \. JV 
L=sA,wA,B,C , K   , _. 

i~* (A. 19) 
The macroscale variables in (A. 19) are related to the mesoscale variables by the following set of 

equations: 
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A-—A 

2 '     ' 

I        \A      -~-A'—AA A        A ( A       1    A A\ 
aA,       I   a,\      .   .a,       a, aA,   aA.     j-.or,       ,   i     a,       a.      1 

1,   = (?/ / +tkl V    -p 'vi J\E'  +2V*   V   I > ?/ 

jaA,       iff/,     ce,        a i h ' =hJ +V  g,J    , 

LAaA 1 
^ A~«*J\A.A    3 s p  ' Av AA. 

A A 

^(<-v?)lr'\Iv,»'V 
 A 1 

7^4 

T^^ 

-/i A 
PAQCAJ s ^     + /^a;    v«;        + /? *a 1 -A-—A ̂ V 

2 '     ' 

A    A A      ~A~AA      ~A' 
P*aA,       Aa,      ,  ?a,       a, ,  «a, 
E  J =E J   +i,J  vt

J     +r ' 
-^-A       1   —-A — 
Aa, la,       a, 

2   ' ' 

-.A V 

(A.20) 
a,ß = sA,wA,  a*ß. 

Summing (A. 19) over N species, we obtain the following equations for the solid and liquid 

phases forming the particles: 

T\aA paA 
-A ..aA LJ     *-' „AtaA,,aA     t„A„aA\        „A ^aArjxA _ 
£ P   —— £tid\k-\£<li  )j-£ P   "    = 

£    eApaALQaA, a = w,s. 
A,wA,B,C 

IMSA 

For the species present in the bulk phases: 

(A.21) 

L=sA,wA,B,C 
IMSA 

^K, T?K, 

P     ~Dt *  tk,V'* ~^   *   ^ ~£   P    h     = 

£    eKpKjLQKj+sKpKjEK\     K = B,C, j = l..N, 
L=sA,wA,B,C 

L*K 

Summing (A.22) from j = 1 to N, we get: 

„K „K D   E K,K„K       t„K„K\ „K „AT rAT e P  —rr s tuvIJC-{£ q, ),-s p h   = 

(A.22) 

Dt 

£    eKpKLQ\   K = B,C 
(A.23) 

L=sA,wA,B,C 
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The macroscopic constituent variables are related to their bulk counterparts by the following set 

of equations: 

EK=f,CK'{EK>+\uK
k>uK

k<), 
7=1 

N 

*l'=I 
N 

9i f'+#«? -pK,*f' W1 A<j<' 

7=1 

7=1 

^ + *7J V + LeK' (EK
"

K
 +i«,Vy 1 > 

I,A:=^JW^,JB,C, Z*£. 

The following restrictions apply: 

|>r' IV' + ? V +r^ (V> +ivf'v^ ] = 0, 

*V' = 0, 

K,L = sA,wA,B,C,  K*L. 

The £oyi arising in (A.25) implies ^. 

Entropy Production 

The equation of entropy balance for the j* species in the particle is: 

•.aA,    aA, 

?ApaAj.U_Jl ^^A')t-e
ApaA'baAj  = 

(A.24) 

(A.25) 

(A.26) 
V* A    aA, L 1oA, A    aA, »aA,   ,     A    aA, . aA. .     i    \T 2_,     s p  ' 0  J+e p  'rj  '+£ p  'A  ',  a = w,s, j=\..N 

L=sA,wA,B,C 
LtaA 

The macroscopic variables in (A.26) are related to the mesoscale variables by the following set 

of equations: 
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A A 

rj J
=TJ

J
 ,b }=bJ ,fi J=\<p,J) -p V V 

Ld,aA* =- 9       eApaAj H 
1—-  \ sa\tf +pa>rf<\vk\^-v^kda, L = B,C 

-A-—-A -A- A 

A
aAj=AaJA a,ß=sA,wA, a*ß. 

Summing (A.26) from j = 1 to N, we obtain: 

rtccA   a A A 

eA
p

aA±LJL (e
A^A\l-£ApaAbaA =    £    eApaALfA+eApaAhaA, 

L=sA,wA,B,C 
L*aA 

a = w,s. 

The entropy balance equation for the species present in the bulk fluids is: 

y Dt n   /,/ 

2    sKpK>LiK'+eKpK'vK>+sKpK<AK',  K = B,C,j = l..N 
L=sA,wA,B,C 

Summing (A.29) over N species, we get: 

e p  —— {e <f>, )j-e p b   = 

2    £KpKLiK+eKpKAK,  K = B,C. 
L=sA,wA,B,C 

The relations between the macroscale constituent and bulk variables is: 

7=1 7=1 

bK =j^cK'bK', LiK=jrcK> (Lp' + VV"*), 

L,K = sA,wA,B,C, L*K. 
N 

7=1 

7=1 

The following restrictions apply to the entropy balance equations: 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.31) 
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eKpK> [Lp' + L?'rf> ) + eLpLj(KiLj + W) = 0, (A.32) 
K,L = sA,wA,B,C,  K*L. 

Total Entropy Inequality 

The entropy inequality states that the net rate of generation of entropy inside the universe 

is always greater than or equal to zero. Thus, at macroscale all independent processes taking 

place inside the body must satisfy the following inequality: 

pA = fj(e
ApwAjAwAj +eApsAjAsAj +eBpBjABj +scpCj ACj)>0 (A.33) 

We assume that at each spatial location inside the body, different phases are at local thermal 

equilibrium. The temperature is allowed to vary from one spatial location to the other 

rpsAj _ J,WAJ _JB_JC_J (A.34) 

We also assume the sources of entropy are solely due to heat flux and the body source of heat. 

Thus, our system is thermomechanically a simple system 

K K 

tfj =%^-,  bKj =—,   K = sA,wA,B,C. (A.35) 

Since entropy cannot be directly measured from experiments, a Legendre transformation is 

performed on EKj to convert it into the Helmholtz free energy, AKj, which is a function of 

temperature 

AKj = EKj -TrjK' (A.36) 

Summing AKj over the N components, we obtain the inner part of the total Helmholtz free 

energy 

Af^CKjAKj. (A.37) 
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Eliminating hKj between the equations of energy and entropy balance and simplifying, we get 

the following entropy inequality. The saA in this equation implies eA. 

TpA = -    Z     eKpk 

K=sA,wA,B,C 

( DKAf     K D
KT^ 

 —h 77      
Dt       '    Dt 

here, 

+ z ^{k+s/w 
K=sA,wA,B,C V J=l ) 

K=sA,wA,B,C j=\ 

C
K
T r     N 

I ^K+2 
JC=a4,Wy4,B,C 

V^i        K,    K,(   ,K,       1     AT,    AT,   1      Jt,    K, 2 P'U,'\A '+-«,'«,' J-V«»' 

- E  2X' **/'?*' +     X    s'pK'LffJHsKp'C'A'C'h 
L=sA,wA,B,C 

2,     £ P    Ti vi 
K JK. LirK^KM 

K=sA,wA.B,C L=sA,wA,B.C 
K*L 

1 N 
1 V"< ^    K    K,    K,    K. 

*• K=sA,wA,B,C 7=1 

*£*' + f*' 
L=fi4,Wy4,fl,C 

V UK 

-  Z      Z   *V^U*4V'^VH   >o. 
(A.38) 

4=|K,+vi),      K = sA,wA,B,C. (A.39) 
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Appendix-B 

Latin Symbols 

AKj Helmholtz free energy of the f1 component in the K phase 

Af Inner part of the Helmholtz free energy of the K phase 

bKj External entropy source for the j* component in the K phase 

bK External entropy source for the K phase 

cf' Finger deformation tensor of the solid phase at macroscale 

CKj Mass concentration of the j* component in the K phase (= pKj I pK ) 

CuL Material coefficient in equation (5.16) 

du Rate of deformation tensor of the K phase 

LeKj Net mass transfer from the phase L to the j* component in the K phase 

LeK Net mass transfer from the phase L to th 

EK] Internal energy of the j^compo' .phase 

EK Internal energy of the K 

EKj Energy gained b;. u .c j" component from other components in the same phase 

E^ Lagrangian strain tensor of the solid phase at macroscale 

(m) 
E£    m* order material derivative of the E^L with respect to the macroscale solid phase 

velocity 

gf1     Gravitational force on the j* component in the K phase 

gf      Gravitational force on the K phase 

GK     Gibbs free energy for the phase K 
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Gfmn    Material coefficient in equation (5.23) 

G
KLMN Material coefficient in equation (5.17) 

hKj     Net external energy source for the j* component in the K phase 

hK      Net external energy source for the a phase 

Hum    Material coefficient in equation (5.17) 

Hum    Material coefficient in equation (5.22) 

i,Kj      Momentum transfer to the j* component due to interaction with other components in the 

same phase 

sA 
JKLM Material coefficient in equation (5.5) 

Ku Thermal conductivity tensor of the K phase 

KK Isotropie thermal conductivity of the phase K 

pK Thermodynamic pressure in the a phase 

p Total thermodynamic pressure for the homogenized mixture at macroscale 

qf'      Heat flux vector for the j* component in the K phase 

qf      Heat flux vector for the K phase 

q,        Total heat flux vector for the homogenized mixture of particles and bulk fluids at 

macroscale 

LQKj   Net heat gained by the j* component in the phase K from the phase L 

lQK    Net heat gained by the phase K from the phase L 
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rKj      Mass transfer to the j* component due to interaction with other components in the same 

phase 

RuJ     Material coefficient in equation (5.29) 

R%A Material coefficient in equations (5.28) 

R% Material coefficient in equations (5.19) 

REV Representative elementary volume 

t Time 

$ Stress tensor of the j* component in the phase K 

t%       Stress tensor of the phase K 

tu       Total stress tensor for the homogeneous mixture of particles and bulk fluids at 

macroscale 

t%*      Terzaghi stress 

f™      Hydration stress 

TKj     Temperature of the j* component in the phase K 

T        Temperature 

Lft
Kj    Momentum transfer to the j* component in the phase K due to mechanical interactions 

with the phase L 

Lf,K     Momentum transfer to the phase K due to mechanical interactions with the phase L 

ul'      Diffusion velocity of the j* component in the phase K 

vfJ      Velocity of the j* component in the phase K 

vf       Velocity of the K phase 
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4 Eulerian coordinate in the phase K 

xK
K Lagrangian coordinate in the phase K 

Greek Symbols 

8* Kronecker delta function in Eulerian coordinates 

5KL Kronecker delta function in Lagrangian coordinates 

ea Mesoscale volume fraction of the phase a 

eK Macroscale volume fraction of the phase K 

Entropy of the j* component in the K phase 

Entropy of the K phase 

rjKj Entropy gained by the j* component in a phase by interaction with other components in 

the same phase 

sw Thickness of the water layer between solid platlets. See Fig. 2. 

Ss Thickness of solid platlets. See Fig. 2. 

LK, 
K    ' Material coefficient in equation (5.26) 

A", /l* Isotropie material coefficients. See equation (5.35) 

sA 

ß", ju
K Isotropie material coefficients. See equation (5.35) 

AK< Net entropy production for the j* component in the K phase 

AK Net entropy production in the K phase 

A Net entropy production in the system at macroscale 

ß ' Chemical potential of the j01 component in the K phase 

P ' Density of the j* component in the K phase 
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pK Density of the K phase 

nw Swelling pressure due to interaction of particle A with the bulk fluid B 

<j>f' Entropy flux vector for the j* component in the K phase 

<j>f Entropy flux vector for the K phase 

L(j>K' Entropy transfer to the j* component in the K phase from the L phase 

Lij>K Entropy transfer to the K phase from the L phase 

vuL Material coefficient in equation (5.22) 

Subscripts 

D Dissipative 

eq Equilibrium 

neq Near equilibrium 

k, I Eulerian coordinate indices 

K, L Lagrangian coordinate indices 

Superscripts 

sA solid component of particle at macroscale 

wA water (or liquid) component of particle at macroscale 

B, C bulk fluid phases 

a, ß General representation of phases at mesoscale 

K, L General representation of phases at macroscale 

j A given component of species 
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Special Symbols 

r\ j L. 

——   Material derivative of a function with respect to velocity of j  component in the K phase 

——    Material derivative of a function with respect to velocity of the K phase 
Dt 

vfM    Velocity of the K phase relative to the solid phase at macroscale (= vf - vf) 
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III. Multicomponent, multiphase thermodynamics of swelling porous media 

with electroquasistatics: Macroscale field equations 

Multicomponent, Multiphase Thermodynamics of 
Swelling Porous Media with Electroquasistatics: 

I. Macroscale Field Equations 

Lynn Schreyer Bennethum *        John H. Cushman t 

March 5, 2001 

Abstract 

A systematic development of the macroscopic field equations (conser- 
vation of mass, linear and angular momentum, energy, and Maxwell's 
equations) for a multiphase, multicomponent medium is presented. It is 
assumed that speeds involved are much slower than the speed of light and 
that the magnitude of the electric field significantly dominates over the 
magnetic field so that the electroquasistatic form of Maxwell's equations 
applies. A mixture formulation is presented for each phase and then av- 
eraged to obtain the macroscopic formulation. Species electric fields are 
considered, however it is assumed that it is the total electric field which 
contributes to the electrically induced forces and energy. The relation- 
ships between species and bulk phase variables and the macroscopic and 
microscopic variables are given explicitly. The resulting field equations 
are of relevence to many practical applications including, but not limited 
to, swelling clays (smectites), biopolymers, biological membranes, pulsed 
electrophoresis, and chromotography. 

Key words: porous media, mixture theory, electrodynamics, averaging, swelling 

1    Introduction 
We attempt to address the following issue: in a composite or porous medi- 
um, how do the electro-thermodynamic variables of each individual constituent 
contribute to the electro-thermodynamic variables of the mixture as a whole? 
In other words, given information about individual materials, determine the 
relationship between the electro-thermodynamic properties of individual com- 
ponents and the electro-thermodynamic properties of the averaged multi-phase 

•University of Colorado at Denver, Center for Computational Mathematics, Campus Box 
170, P.O. Box 173364, Denver, CO 80217-3364. bennethum@math.cudenver.edu. To whom 
correspondence should be addressed. 

t Center for Applied Math, Math Sciences Building, Purdue University, W. Lafayette, IN 
47907. 
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multi-component material. We combine mixture theory and averaging to obtain 
macroscopic field equations for a deformable porous medium in which species 
may induce different electric fields but forces on the species are determined by 
the net electric field of the mixture. 

The constituent forms of Maxwell's equations were first developed by Kel- 
ly [24], although he did not consider deformable media. A binary mixture of 
electro-magnetic fluids has been used to model plasma with single electric and 
magnetic fields, see e.g. Kulsrud [25]. Benach and Müller [2] applied single 
electric and magnetic fields to model a mixture of dielectric fluids. The idea 
of using multiple electric fields has been used historically in modeling a binary 
mixture of superconducting fluids [9]. Eringen [14] developed a mixture theo- 
retic approach for a multiple constituent electro-magnetic deformable medium 
with multiple electro-magnetic fields and applied the model to combinations of 
conducting/superconducting fluids and elastic solids. This article differs from 
[14] in that multiple phases are considered, a different philosophy is taken in 
the electric fields of constituents accounting for energy and momentum balance, 
and the mixture may swell. Mixture theory alone does not allow for this de- 
velopment. An upscaling approach is required to map microscopic information 
into well-defined macroscopic variables. 

On the microscale one can distinguish between phases or materials, while 
the macroscale is defined to be the scale at which the material appears to be 
homogeneous. There are several upscaling techniques to choose between: ho- 
mogenization (matched asymptotics) [5,12,35], volume averaging in the sense of 
Whitaker [31, 33, 34,41, 42], spectral integral methods [17], generalized Taylor- 
Aris methods [7], and hybrid mixture theory [1, 3, 21, 22]. All but the latter 
of these methods upscale field equations and constitutive equations from the 
microscale to the macroscale. The hybrid mixture theoretic approach that we 
adapt does not upscale constitutive relations. 

We present constituent, or species, electro-quasistatic equations for a mix- 
ture, give the relationship between the species and single-phase properties, and 
then volume average these governing equations for a multicomponent, multi- 
phase medium to obtain the governing equations for the medium at the macroscale. 
At this scale, the medium is viewed as a continuum where thermodynamic 
properties for each constituent of each phase exist spatially everywhere. The 
relationships between the microscale variables and the macroscale variables are 
explicitly given. For ease of exposition we assume that interfacial properties 
such as excess mass density, free charge on interfaces, and interface currents, 
are negligible; although the present theory can be extended to incorporate these 
effects [19]. The medium is referred to as multi-phase, but it is understood that 
this includes composites (e.g. a medium composed of two solid materials), or a 
porous medium, where the multiphases may be gas, immiscible liquids, and/or 
solid. 

Maxwell's equations involve species electric fields, but the macroscale mo- 
mentum and energy equations for species are based on the philosophy that the 
force or work induced by the electric field acting on a species is generated by 
the total electric field. This differs from what has been done in the past [14, 24]. 
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The species electric fields are defined through Gauss' Law since the charge and 
polarization density are well defined for a species. The species electric fields 
then manifest themselves in the macroscale equations through terms involving 
gradients or time-rate-of-change of the volume fraction. 

The resulting field equations may be used to obtain restrictions on admissible 
constitutive relations by applying the methods of either extended thermodynam- 
ics [30], or rational thermodynamics [13,10]. The need for these equations, and 
the explicit relationships between the macroscopic and microscopic variables is 
demonstrated by the increasingly complex porous media being studied. Recent 
examples include Huyghe and Janssen [23] and Gu et cd. [20] who both use a 
simplified version of the equations developed herein to model an incompressible 
porous medium composed of an electrically charged solid phase saturated with 
an ionic fluid. 

2    Microscale Equations 

In this section we present the governing field equations at the microscale. The 
equations include mass balance, conservation of linear and angular momentum, 
conservation of energy, entropy balance, and Maxwell's equations. The complete 
form of these equations for a bulk phase (single phase with no species) are given 
by Eringen [15] and Tiersten [38], and here we follow their formulation and 
notation. The derivation of these equations follows from the particle level in 
the spirit of Lorentz [27]. 

It is assumed that the dominant field source is the electric field and that 
velocities are small compared to the speed of light (non-relativistic). Follow- 
ing Melcher [28], the electroquasistatic system of equations are obtained by 
non-dimensionatizing Maxwell's equations, expanding each variable in a Tay- 
lor series about the variable representing the ratio of the electromagnetic wave 
transit time to the characteristic time of the problem, and taking the zero-order 
equations as the quasi-static formulation. The difference between the electro- 
quasistatic formulation and the magneto-quasistatic formulation arises in the 
choice of the normalizing parameters: in the former a reference electric field is 
used, and in the latter a reference magnetic field is used. 

It is necessary to postulate governing field equations which hold for each 
specie. Following Truesdell [40], we adhere to the following principles: (1) all 
properties of the mixture must be mathematical consequences of properties of 
the constituents; (2) to describe the motion of a constituent, we may perceive 
it as being isolated from the rest of the mixture, provided we allow properly for 
the actions of the other constituents; (3) the motion of the mixture is governed 
by the same equations as is a single body. Further, due to the incorporation 
of electric fields, some assumptions must be made regarding the form of the 
momentum and energy balance laws. It is assumed that (4) the "primitive" form 
of the balance laws is the one incorporating the work and force, and not, e.g. the 
electro-stress tensors. This is in contrast to [8, 26] in which the electro-magnetic 
stresses are considered the primitive quantity. The forms are equivalent up to the 

101 



Swelling Porous Media with Electroquasistatics 

classical Maxwell's equations, but are not equivalent in the mixture formulation. 
Hence, until experiments prove otherwise, the choice is purely philosophical. 
The last principle is that (5) within the electrical work and force terms in the 
energy and momentum balance equations respectively, it is the total electric 
field which acts on the species, and not just the electric field associated with 
the species. This last assumption guarantees that principles (1), (2), and (3) 
are not violated. 

Although the form of the equations for the constituents is natural for some 
balance laws (conservation of mass, conservation of charge density), it leads to 
un-intuitive variables in other equations, e.g. the partial stress tensor. However, 
we do not want to mix bulk phase equations with constitutive equations, and 
hence formulate constitutive equations for all field equations. To account for 
the effects of the other constituents, exchange terms, denoted by variables with 
a carrot •, are introduced. 

The species' equations can then be summed to obtain the governing equation 
for the phase, and the relationship between the species properties and their bulk 
phase counterparts are then obtained. The details regarding this procedure for 
the field equations with no electric or magnetic effects can be found in Trues- 
dell and Toupin [39] or Bowen [6]. For the parallel development of Maxwell's 
equations, see Kelly [24]. 

We now present the governing equations for a mixture in a single phase 
at the microscale assuming electroquasistatics. The relationships between the 
species' variables and the bulk phase variables are obtained by summing the 
field equation over all constituents and relating the variables so as to obtain the 
field equation at the bulk scale. These relationships are given in Appendix B. 

Conservation of Mass 
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Dt 
+ p*(V-vj) = pj?j (1) 

where ^ is the material time derivative given by 

£L = l+vi.v (2) 
Dt   at 

and where ?j is the rate of mass transfer to species j from other species due 
to chemical reactions. Summing over constituents we obtain the bulk phase 
equation 

Dp 

with the restriction 

m+p(V-v) = 0 (3) 

£>'?*'= 0. (4) 
i=i 

This restriction merely states that within an isolated system consisting of a 
single phase there is no net loss of mass. 
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Gauss' Law 
For this equation we introduce the electric field for species j, EJ. Gauss' 

law for constituent j can then be expressed as 

V-D'-g^d* (5) 

where Dj is the displacement vector for the jth component only, <jg is the charge 

density of constituent j, and a is the excess charge density due to the presence 
of other species. The displacement vector for constituent j is defined in terms 
of the electric field and polarization density as: 

Dj=e0E
j+Pj, (6) 

where £o is the permittivity in a vacuum. In MKS units, the permittivity has 
the value of 8.854 x 10"12 Farads per meter [28]. 

The species' electric field, E\ must satisfy the restriction that the total 
JV 

electric field, E, is the sum of the species' electric field, i.e. ]P E3 = E.  If 

there is no external electric field then E is just the electric field generated by 
all the species. There is no unique way of incorporating the externally applied 
electric field into these equations. One could treat the external electric field as 
the presence of another species, say species AT, in which this "external" species 
has no other electro-thermodynamic properties. Then species N would have 
no charge density, no associated polarization, etc. and these terms would be 
set to zero in the governing equations. Alternately, a portion of the external 
field could be assigned to each Ei so that Ej is the sum of the electric field 
generated by species j and a weight, w3, times the external electric field. The 
weights must sum to one, and may, for example, be proportional to the amount 
of charge, or maybe the mass fraction of species j. A third choice might be that 
the species electric field is defined such that the exchange term a is zero. This 
would simplify computations down the road although its physical interpretation 
is not clear. These choices have no affect on the following derivation, as long 
as Ej sum to the total electric field. However, in formulating a mathematical 
model it is necessary to choose a particular definition and remain consistent. 

Summing over constituents gives the bulk phase Gauss law: 

V-JD-ge = 0 (7) 

TV 

where D = V^ D3 and with the restriction 

f)2* = 0. (8) 

which states that the net effect of excess charge densities produced by the species 
acting on each other must sum to zero. 
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Faraday's Law 
Faraday's law for the quasi-static case for species j is given by 

VxEj = aj       or       E^ - E{k = eikm&L, (9) 

where the second form of the equation is in indicial notation with repeated 
indices denoting summation, a comma denotes differentiation, and eikm is the 
permutation tensor. Here aj incorporates the effect of the electric fields, E\ 

Summing over species gives the bulk phase Faraday s law, 

V x E = 0, (10) 

N 

where E = Y^Ej is the total electric field. This relationship is assumed 

throughout. The required restriction obtained from this summation is that 

£>J=0. (11) 

Ampere's Law 
Ampere's law for the quasi-static case for species j is given by 

Ji = -^- + V x W - V x (Pj x vj) + hj (12) 
at 

where W is the magnetic field intensity and h accounts for the effects of other 
constituents. 

Summing over species gives the bulk phase version of this law, 

J = _^ + VXCH-VX(PXü) (13) 
at 

where 

£#'=0. (14) 
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Conservation of Electric Charge 
This equation can be derived by taking the divergence of Ampere's law and 

the time derivative of Gauss' Law and summing the results. Of all Maxwell's 
equations, this equation is the most accepted in mixture form since each com- 
ponent has a well defined physical interpretation. The conservation of electric 
charge for species j is 

V • {Ji + qivi) + ?&=$+ p>z¥, (15) 
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where vi is the velocity of species j relative to a fixed frame of reference, J1 

is the free current density of constituent j measured relative to species j, zj 

is the charge per unit mass and g3 is the rate of gain of charge density due to 
the presence of other constituents but not due to chemical reactions. The free 
current density, denoted by Jj, is related to the free current density relative to 
a fixed (Eulerian) frame of reference, Jj , by 

Ji = ji-qivj. (16) 

Another form of this equation is obtained by subtracting out the conservation 
of mass to reduce redundancy, and this yields 

pJ'^f + V-^=?'. (17) 

Summing over constituents yields 

V-(J + qev) + ^ = 0, (18) 

where 
N 

£[§*+pW]=0. (19) 
i=i 

This equation states that the net gain or loss of total charge of constituent j 
due to ion transfer or chemical reactions is zero in an isolated system. 

In addition, because of the coupling between Gauss' law, Ampere's law, and 
the conservation of charge, there is a coupling between the exchange terms: 

_   £j     da       _•       ,vsj 

~~dt=^     ^ 

Linear Momentum Balance 
This equation is given by 

piR^i -V-V- pV -olE- Pj -VE = (/t (20) 
JL/t 

where tj is the partial Cauchy stress tensor and gj is the external body force 
acting on constituent j. The exchange term, t , takes into account all gain of 
momenta due to the presence of other species but not due to chemical reactions. 
The last term on the left-hand-side is usually referred to as the Kelvin force, 
and the adjacent term (on the LHS) is referred to as the Lorentz force [15]. Note 
that unlike [14, 24] we assume it is the total electric field which contributes to 
these forces. 

Summing over constituents gives the conservation of linear momentum for 
the entire phase, 

p^-Vt-pg-qeE-PVE = Q. (21) 
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In this form t is the Cauchy stress tensor and is related to the partial Cauchy 
stress tensors, V, in the same way as the purely thermo-mechanical mixture the- 
ory (no electric field). This is what naturally appears in the energy conservation 
equation given below, i.e. if other terms are incorporated into the definition of 
the bulk phase stress tensor, then these additional terms must be subtracted out 
where the stress tensor appears in the conservation of energy and the restriction 
must be modified. The specific relationship between the constitutive variables 
and the bulk phase variables are given in Appendix B. The restriction for the 
conservation of linear momentum is: 

£[p>? + pVr*]=0 (22) 

The restriction states that the net momentum gained between species due to 
mass transfer or mechanical momentum must be zero. 

Angular Momentum Balance 
In indicia! notation, the angular momentum equation is 

ew„4, + eumPiE, = V«4. (23) 

where fhJ
m is the mth component of the net rate of gain of angular momentum 

due to the presence of other species. The negative sign on the right hand side is 
in keeping with the convention that exchange terms (in this case m?) represents 
a rate of gain of a property. 

Summing over constituents yields 

e«m*M + CklmPkEl = 0m (24) 

with the restriction that 
N 
XymJ' = 0. (25) 
i=i 

This equation states that the net internal angular momentum for this single- 
phase medium, consisting of the sum of angular momenta generated by species 
acting on each other, must be zero. 

Conservation of Energy 
The species energy balance is 
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p>±LJL -V :Vv' -V-q> -p>h}-J' -E-—--E 

-[V-(v'Pj)]-E = fPQj (26) 

where the colon indicates a tensor dot product (e.g. g:£ = Y^i,j aijhj) and QJ is 
the rate of energy gain due to the presence of other constituents but not due to 
chemical reactions (mass transfer) or momentume transfer. The sum of the last 
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three terms on the left-hand-side is the electrical energy source. As in the linear 
momentum balance we assume that electric energy is due to the total electric 
field, not just part of it. These three terms take on a variety of forms [15, 28] 
which are related through the Maxwell equations (Gauss' law, Faraday's law, 
Ampere's Law, and Conservation of Electric Charge). The form presented here 
is the one derived directly from microscale electrical forces using a statistical 
averaging approach (see Eringen [15]) making no use of Maxwell's equations, 

since otherwise exchange terms (a , tr3, q3) appear. 
Summing over constituents yields 

P^--t:Vv-V-g-ph-J-E-^--E-[V- (vP)] -E = 0      (27) 
Dt ot 
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with the restriction 

TV 

(PQ3 + (Pv3 • z3 -I- (e3 + -v3- v^fPr3' = 0. (28) 

Entropy Balance 
The entropy balance equation is one way of representing the second law of 

thermodynamics: 

fp ^- -V-tp3- (PV = (Pr? + (PV (29) 

where rp is the rate of transfer of entropy from other constituents. Here A3' is 
the rate at which entropy is generated. 

Summing over constituents yields 

p^-V-<p-pb = (PA (30) 

with the restriction 
JV 

Yt[pjfJ3+Piv31rj]=0. (31) 

It is postulated that the total rate of entropy generation, obtained by summing 
over all species, is non-negative. All relations for this equation remain unaltered 
from the purely thermo-mechanical mixture theory. 

3    Macroscale Equations 

In this section we average the microscale equations and obtain equations at the 
macroscale. At the macroscale, each thermodynamic variable is defined spatially 
everywhere, so that if there are 3 phases, with each phase containing JV con- 
stituents, the medium is viewed as 3N overlaying continua. The first subsection 
discusses the notation and assumptions required to upscale, and the following 
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subsections present the macroscale field equations and how each variable relates 
to the microscale. To the authors' knowledge, the electroquasistatic equations 
have not been presented before. 

3.1    Averaging Procedure 

Consider a multi-constituent multi-phase medium where the phase is denot- 
ed by Greek letters (a, ß, 7), and the constituent or species is denoted by 
j, j = 1,...,N. For ease of exposition we assume that interfaces contain no 
thermodynamic properties. Consequently it is assumed no amount of mass, 
momentum, energy, charge, current, etc. is lost when being transferred between 
phases. Interfacial effects can be included by pursuing any of the approaches of 
[18, 19, 29], however, we shall omit these terms to keep the level of algebra at a 
minimum. 

The governing microscopic equations for each phase were given in Section 2, 
but to distinguish between phases we introduce the additional Greek superscript. 

Assuming no surface discontinuities, the constituent, microscopic field e- 
quations of mass, charge, linear momentum, angular momentum, energy, and 
entropy can be expressed for a given phase, a, as (following the notation of 
Eringen, [13]): 

■?-(pV) + V • (AV) - V • ij - (?P - Fj = (PG* + ffi        (32) 
ot 

where V>J is the mass-average (over the phase) thermodynamic property of con- 
stituent j, v3' is the mass-average velocity vector, p3 is the mass density, ij is the 
flux vector, j3 is the body source, F3 is the supply due to electrical effects, G3 is 
the net production, and V> represents the influx of ip from all other constituents 
(e.g. due to chemical reactions). If there is only one constituent, ip is zero. 
For each of the respective equations, the quantities given in Table 1 are used. 

Table 1: Quantities for Equation (32) 

Quantity v- i f F i> G 
Mass 1 0 0 0 r 0 
Charge z J 0 0 q + pzr 0 
Linear Momentum V t 9 + 9i Fe i + rv 0 
Angular Momentum r xv r x t rxg rxFe + Ce r x (i + rv) 0 
Energy e+\v2 tv + q g-v + h We Q + i-i> + r(e + §v2) 0 
Entropy n 4> b 0 rj + rv A 

For conciseness we also introduce the force, couple, and work due to the electric 
field, respectively: 

Fe   =   qlE + P'-VE (33) 
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=  -V • (D'E - ^e0E
j ■ El\ +d?E + ±e0 {VE ■ Ej - VJ5? • E$4) 

C{   =   Pj*E (35) 

Wi    =   J'.E + ^-E + V-(v'E-P3) (36) 
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d_ 
at 

(-^e0E
j -E)-V-(EXH

J
)+V- (PV ■ E) 

*-'-H%-'-%-') 
(see also equations (20,23,26)). Definitions of all terms are given in Appendix 
A. The forms of F{ and W/ are a consequence of which form one assumes to 
be the most primitive. If one assumes that the second forms of F{ and W/, 
(34, 37), are the most primitive then miscellaneous terms would appear in the 
first forms. The two forms are needed in order to obtain conditions which 
correspond directly with jump boundary conditions across an interface. The 
averaging procedure is based on ideas laid down in [16, 41, 42, 37]. Several 
methods are available, but we choose the computationally simplest. Equations 
are averaged by weighted integration using the indicator function of the a-phase. 
To avoid the mathematical difficulties of, for example, defining a derivative of 
the averaged quantities resulting from using such a weighting function, one must 
treat the averaged quantity as a distribution [36, 32]. 

It should be noted that using this simple weight function may mean that 
the averaged value may not represent the actual values being measured. To 
account for the measuring technique, one needs to choose a weight function 
which represents the instrument used to measure the physical properties [11]. 
Extensions of the presented theory to such cases are straight forward. 

Let SV be a volume, SVa the portion of SV in the a-phase, and SAaß the 
portion of the interface within 6V. It is assumed that SVa and SAu are isolated 
simply connected regions. If the magnitude of SV is denoted by |<SV| then the 
volume fraction can be expressed as 

e"0M) = ^ (38) 

so that 
£e- = l. (39) 

a 

The indicator function is 

t   t\ - / 
X    if r e 5Va 

We may write r = x + £ where x is the macroscale spatial variable, and 
£ varies over SV. To obtain the macroscale equations formally, one multiplies 
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equation (2) by 7<,(r), integrates over Wwith respect to £ {x is held fixed) and 
divides by \öV\. Then in order to obtain equations of the forms which mirror 
the microscale equations, the following theorem is applied to interchange the 
order of differentiation and integration. 

Theorem 1 If wQß is the microscopic velocity of interface aß and na is the 
outward unit normal vector of 8Va indicating the integrand should be evaluated 
in the limit as the ctß-interface is approached from the aside then 

\6V\ Jö 'svdt 
1adv(Z)     = 

dt[\sv\Jsv h\Lhadv{i) 

fwaß-nada(0  (40) 

W\ Jsv 
fnada(£). (41) 

After averaging equation (32), the system is considered to be a mixture so 
that each component in each phase and each bulk phase now have thermo- 
dynamic properties existing at each point within the macroscopic body. The 
macroscopic definition of each field variable in terms of its microscopic counter- 
part, making no small perturbation assumptions, is given in Appendix C. 

For more details regarding this procedure for the field equations with no 
electric or magnetic effects see for example Whitaker [41], Slattery [37] and 
Plumb and Whitaker [31]. For the parallel development of Maxwell's equations 
with constitutive assumptions, see Rio and Whitaker [33, 34]. 

3.2    Macroscopic Conservation Equations 

Conservation of Mass 
The macroscopic mass balance for constituent j in phase a is 

Dt 
+ eapai (V • va') = 53 eaPa*e%J + eapaira* (42) 

where ^f is the material time derivative given by 

5Ü = J^+V«,.V, (43) 
Dt      dt ' 

and e*J represents the net rate of mass gained by constituent j in phase a from 
phase ß: 

* - ^JL^--0-"** (44) 
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where w*ag is the velocity of species j at interface aß. 
The bulk phase counterpart is given by 

Da(e°pa) +eapB(v.t>a) = <£eaparß. (45) 

The net gain of mass of the bulk phase must be zero, implying that: 

N 

Y^tP
airai=0      Va. (46) 

Further, since the interface is assumed to be massless, we have the restriction: 

e V'e£' + eV'e£ =0,       j = 1, -.., N. (47) 

Using (45) we can re-write (42) as 

eapa^^- + V • {eapa*va"a) = Y, eaPai@ß ~'^) + eapa'?a'.      (48) 

Gauss' Law 
The macroscopic form of Gauss' law for constituent j in phase a is 

V • (eaDa*) - eaq? = eaT + £ eaT/ (49) 
ßjta 

where Dai is the volume average of Dj.  Here dß   represents the effect con- 
stituent j in phase ß has on the charge of the same constituent in phase a: 

V=-THnf       Djnada. (50) 

Other relations are given in Appendix C. 
Summing over j yields the bulk phase form: 

ß*d 

The restrictions include 

YJJ =0       V a (52) 
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ead0' + e"<C=0,       j = l,...,N. (53) 

The first restriction states that the net effect constituents have on each other 
within phase a must be zero, and the second states that the interfacial displace- 
ment is zero, which is a consequence of assuming that the interface contains no 
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electric/thermodynamical properties. Recall that if there is no surface charge 
or polarization the jump condition between two materials states that the jump 
in the normal component of the displacement vector must be zero [15]: 

n •[[!>]] = 0. (54) 

Integrating this equation over SAaß shows that this theory is consistent with 
the classical formulation for the jump condition, equation (53). 

Faraday's Law 
The macroscopic form of Faraday's law for constituent j in phase a is 

V x (eaEa>) = ea$ai + £ eaa% (55) 
ßjta 

or in indicia! notation 

{eaEa
k
i),l -(e

aE^),k = elkmead% + £ elkmea(aa
ß
j)m (56) 

where 

P IWal J8Aaß 

which represents the effect phase ß has on the electric field of phase a. Upon 
summing, the bulk phase form of Faraday's law becomes: 

Vx(eT) = j£°5; (58) 
ß±a 
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with restrictions 

N 

2^=0       Va (59) 
3=1 

£aB°s + eßaß
a
j = 0      j = 1,..., N. (60) 

Equation (60) corresponds precisely with the classical jump condition across 
interfaces [15] 

nxp?]] = 0, (61) 

where the double square brackets indicate the difference of the quantity evalu- 
ated on either side of the interval, if (61) is integrated over the surface SAaß. 
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Ampere's Law The macroscopic form of Ampere's law for the quasi-static case 
for species j of phase a is given by 

e«j«i _ _d(£aJPa0 + v x (£«H<*i) _ v x (eQPa>- x va>) + £ eahap + eah,ai (62) 

where 

Kß = mn L   \DJ<ß ■ n° - & - pi * «*> * n°] *»      (63) IdVol JSAoß 
L J 

represents the effect of phase ß on phase a. Summing over species gives the 
bulk phase version of this law, 

£aja = _d{£QDa) + v x £OJfa _ v x (£Qpa x w0) + £ £a£a ^ 

where the restrictions are 

£/T'=0       Va (65) 

e«/^' + eßhßJ =0      j = 1,..., iV. (66) 

The jump condition associated with Ampere's law is given by [15]: 

n x [[H - w x D]] = 0 (67) 

where the polarization at the surface has been neglected. Equation (63) does 
not correspond directly with the jump condition given in [15] since (67) is de- 
rived directly from the global surface area form of Ampdre's law, and (63) is 
derived from the bulk-phase form of the law. This causes a loss of information; 
specifically, (63) does not include a term corresponding to tuJ(n • Dj). 

Conservation of Electric Charge 
The conservation of charge equation at the macroscale becomes 

V ■ (eQ Jai + eaq?vQi) + i:{eaq°') = eag°' + eapa'zaif°i 

ß?a 
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where 

(69) 
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which represents the rate of exchange of charge of constituent j from phase 
ß to phase a not due to mass exchange. Using the continuity equation, (42), 
equation (68) may be re-written as: 

eapa> 2jg- + V • (ea Ja') = Ears + J2 eapa' Z°£ (70) 

Summing over constituents yields 

V • (ea Ja + eaq?va) + |(ea«e°) = £ eaf@ß + z"^ <71) 
0t ß** 

where the following restrictions apply 

N 

Y, [5°' + PB'*a,'r°*] =0       V a (72) 
3=1 

sapa> (2% + za%>) + eV' (Za + **#) = 0      j = l,..,N. (73) 

Equation (73) corresponds precisely with the classical jump condition across a 
discontinuous interface [15]: 

n-[[J + qe(v-w)]} = 0. (74) 

Linear Momentum Balance 
The macroscale linear momentum equation is given by 

e*pai ^~TP~ " v' (£"*aj} ~£apai {9<Xi +9"i)~ eaq°j ET 

+\eQET • Ea> VeQ - eaPa> ■ VET = eapa>V + ]T «VT? (75) 

where ET is the upscaled (total) electric field and is related to the species 
N 

electric field by ET = £ !£ eajS7°'' and 

j=l   a 

r? = ^7|^| J6A    [(tjf + «^ - \**& ■ EI + P>vi{w>aß - «>')] • n« da 

-^L„/'(^-vJ)-n0da+^^(76) 

represents the effect constituent j of phase /S has on the rate of change of me- 
chanical momentum of the same constituent in phase a. The relation between 
the other macroscale variables and their microscale counterparts are given in 
Appendix C. 
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There are a couple of additional forces in this form compared to the classical 
form due to the introduction of the species electric field, E01*, and the volume 
fraction ea. The first we consider an additional (internal) body force, gt. It 
is due to the difference between E and Ej (see Appendix C), and so if the 
source of the electric field is dominated by one charged species, then this term 
is negligible. The other additional term involves the gradient of the volume 
fraction. If the medium is homogeneous in volume fraction (eQ is constant), 
then this term is zero. The form of this equation is motivated by the form of 
TaJ, which we choose to be consistent with the jump condition associated with 
momentum balance. 

Summing over j yields 

eapa^f- - V • (eata) - eapa(ga + gf) - eaqfET - eaPa ■ VET 

= ^eQp°Ta
ß,     (77) 

with restrictions 

N 

^2 Pa> (**' +?aiva')=0      V a (78) 

eapa'{fa
ß
i + ^V') + eV'(T? +e£V') = 0      j = 1,...,N. (79) 

The jump condition across a discontinuous interface is [15]: 

n ■ [[pv(v - w) -1 - tB}] = 0 (80) 

where w is the speed of the discontinuity and for the electroquasistatic case 
considered here, 

Fe = V • tE = V • {DE - \eQE ■ EJ). (81) 

Equation (80) can be shown to correspond directly with (79) using (53). 

Angular Momentum Balance 
The macroscale form of the conservation of angular momentum equation in 
indicial notation is 

-eaeklmta
ki - eaeklmP?(ST), = eV<' + eV**C 

+ Y,£aPai(™ß)m (82) 

where the definitions of all variables are given in Appendix C. Thus the macroscale 
equation is composed of two parts. The equation consisting of all but the term 
involving Maj is the macroscale form of the microscale equation.  The term 
Mai contains all terms arising from the the microscale conservation of linear 
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momentum crossed with £ and volume averaged. These additional terms for the 
purely mechanical case have been derived before ([16, 22]). The term in M°' 
involving the time rate of change of velocity is known as inertial [16] or local 
[22] spin. The term in Ma> involving tj has been referred to as the first sur- 
face stress moment [16], or apparent couple stress tensor [22]. One observation 
which is painfully clear is that even in a medium which contains no electric field 
or charge, the mixture of two media which have symmetric stress tensors may 
result in a macroscopic medium which has a non-symmetric stress tensor. 

Summing over j yields 

-£Be«m<& - eaekimP^Er)i = eapa>MZ + £ eapa{fha
ß)m    (83) 

where we note that symmetry of the stress tensor is lost due to possible polar- 
ization of the medium, the microscale angular momentum, and the interaction 
of the phase with other phases. 

The restriction which must hold to preserve angular momentum within a 
phase is 

JV 

^2pa'rnai=0       Va. (84) 

The restriction which arises from the assumption of no interfacial angular mo- 
mentum is 

eyro^+^m^O       j = l,...,N. (85) 

Conservation of Energy 
The conservation of energy equation is given by 

e«p«i £Ü£!l _ eata>: W - V ■ (eaqa')-£apaiha' - eaJai ■ ET 

-      ^   ] -ET-V- (eava*Pa') ■ ET - \z*ET ■ ^'-^f 

= eV'i3ai+I>V,'Ö?  (86) 
0#a 

116 

where 

+pj(ei + lvi . vi + l£o& . E)(wj
aß - «>')] ■ na da 

~^m' JL K+EDl ~ ^Ei'E)I+^iwiß' ^ ■na da 
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+—i__ /       [( _ £oE
jE + e0(E

j ■ E)l) ■ vj + Hj xE]-na da 
fP'\0Va\  JSAaß 

-TßET-va'-haß -ET 

represents the effect constituent j of phase ß has on the rate of change of energy 
of the same constituent in phase a due to non-mass transfer, non-mechanical 
means. The relation between the other macroscaJe variables and their microscale 
counterparts are given in Appendix C. As in the linear momentum equation, 
upscaling produces an additional term involving the material time rate of change 
of the volume fraction. This term would be negligible in a non-swelling porous 
medium. Additional effects of fluctuations in the species electric work terms 
manifest themselves in the flux term, qa', and the external source term, haJ. 

Summing over constituents yields 

na a d(eaP01) 
eaPa   Z   ~ £"*" : Vv° ~ V ■ (£"9a) ~ £aPaha ~ £aja ' ET

 ~      -      ' ET 

(87) 

Dt 

with the restrictions 
N 

at 
-V • (eavaPa) ■ ET - \e*Ea ■ ET^- = £ eapaQa

ß (88) 
ß±<* 

£  ft Q<*i + /fit" -va'+ p"*?** (ea* + \ (va>)A 1 = 0.       V a 

paiQß''+eapaiT% -va* +eapa%i (ea> + ^K')2)] 

(89) 

j = l,...,N. 

(90) 

The first restriction states that energy must be conserved within a phase, and 
the second states that the interface can hold no energy. 

We wish to compare (90) with the jump discontinuity condition. Various 
forms exist depending on what is considered negligible and the use of Maxwell's 
equations. Here we consider 

[[q + t-v + (pe + lpv2)(w -v) + ie0(£ ■ E)w + H x E + PE ■ v]] ■ n = 0. (91) 

Equation (90) can be re-written as: 

-i- /        \qi + (ti+PjE)^ + p>(e^ + \(v^)(wiß-v' 
\oV\ JSAaß L z ) 

+le0(E
j-E)wj

aß + &xE ■nada 

= TL I       W + (*' + piE) •VJ + P*& + l(vJ)2K<ß -VJ) 
\oV\ J5Aaß L L 



Swelling Porous Media with Electroquasistatics 20 118 

+le0(&-E)wj
aß + HtxE ■ nß da.     (92) 

Comparing terms we see that the condition involving exchange of energy 
across the interface, (90), conforms exactly with the classical jump condition 
(91). 

Entropy Balance 
The entropy balance for constituentj in phase a is given by 

eapa' D<X^a' -V-ea4>ai-eapa'ba' = ^Ey'lJ'+eY'f+£YJÄ°' 
Dt ft*« 

(93) 
where $«' represents the rate at which entropy is gained from constituent j 

in phase ß. Summing over constituents we get 

£apaD^£ _ V . ^^ _ eapaba _ ^ £
a

P
a% + SapaAa, (94) 

Dt ß±<* 

with restrictions 

N 

Yl Pai (.*}"* +raiT]ai) = 0      V a. (95) 

£ap^($y +rß
jrf') + eV'(*a' H-SgVO =0       j = 1,-,N. (96) 

The second condition is exactly analogous to the classical jump boundary con- 
dition applied at an interface. This equation can be used to obtain restrictions 
on the forms of constitutive equations using, for example, the Coleman and Noll 
method (see e.g. [4, 13]). At this point we make no assumptions regarding the 
form of the entropy flux or source. It is now postulated that the rate of entropy 
production is non-negative after summing over both species and phases. Our 
statement at the end of Section 2 need not hold in this case, as it is the rate of 
entropy production of the universe which is non-negative. 

4    Discussion 

We have provided the microscale and macroscale balance laws for a multiphase, 
multi-species, swelling system which incorporates electroquasistatics. The mi- 
croscale derivation follows the approach of Eringen and Maugin [15], while the 
upscaling to the macroscale is achieved via spatial averaging. The species elec- 
tric field, Eaj, is carefully defined and the complete relations between the mi- 
croscopic and macroscopic variables and the species and bulk phase variables 
are provided. Further comparisons were made between restrictions required to 
hold at interfaces and jump conditions classically used at interfaces. 
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In regards to the conservation of momentum and energy, there are several 
ways in which one can group together terms into the definitions of the macro- 
scopic variables. In this paper, we choose the macroscopic definitions in a way 
which results in consistency between restriction conditions at interfaces and 
classical jump conditions used at interfaces. But as a consequence, additional 
body sources appear due not to external sources but due to species electric fields 
and microscopic fluctuations of the work terms. Further, there are additional 
terms which appear due to gradients in volume fractions and material time rate- 
of-change of the volume fractions in the conservation of momentum and energy 
equation, respectively. This is not due to the primitive choice of F3

e and W£ (see 
equations (33-35)). Rather it is a consequence of the choice of grouping terms 
so as to recover classical jump conditions. The consequence of these additional 
terms needs to be investigated. This is partially done in part II of these papers. 

The field equations are required for many practical applications including, 
but not limited to, swelling clays (smectites), biopolymers, biological mem- 
branes, pulsed electrophoresis, and chromotography. In part II of these papers 
we exploit the entropy inequality with independent variables consistent with 
several natural systems and apply the resulting constitutive theory near equi- 
librium for two problems: electrolyte transport in swelling clays and pulsed 
electrophoresis. 
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Appendix A.    Nomenclature 

Superscripts, Subscripts, and Other Notations 

.at  jth component of a-phase on mesoscale 

a-phase on mesoscale 

fluctuation from averaged quantity 

denotes exchange from other interface or phase 

■*■'    difference of the two quantities, i.e. ■* - •' 

\aj   microscopic property of constituent j in phase [subscript] (non-averaged) 

Latin Symbols 

6Aaß-. Portion of a^-interface in representative elementary volume (REV) 

ba', ba:    External entropy source [J/(Kg-s-°K)] 

Cai: Mass fraction of j™ component [-] 

Dai,Da:    Electric displacement [C/m2] 

tT3:  Net effect other constituents have on the charge of constituent j within 
phase a in Gauss' Law [C] 

TJ: Net effect phase ß has on the charge of constituent j in phase a in Gauss' 
Law [C] 

eai,ea:    energy density [J/Kg] 

122 
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e*J:  Rate of mass transfer from phase [subscript] to phase [superscript] per 
unit mass density [1/s] 

E<*i s E
a:   Electric Field intensity generated by (the jth constituent of) phase 

a[V/m] 

gai, ga:    External supply of momentum (gravity) [m/s2] 

g°j ,gf:     Internal supply of momentum due to fluctuations in Kelvin and 
Lorentz forces [m/s2] 

ha*, ha:    External supply of energy [J/ (Kg-s)] 

h"*, h":   Free current density induces by other species within the same phase 
within Ampere's law [A/m2] 

hV, ha
ß:   Free current density induces by other phases on species j in Ampere's 

law [A/m2] 

i°3: Rate of momentum gain due to interaction with other species within the 
same phase per unit mass density [N/Kg] 

Hai,Ha:    Magnetic field intensity [A/m] 

V*: Rate of momentum gain due to interaction with other species within the 
same phase per unit mass density [N/Kg] 

3ai, Ja:    Free current density in a fixed frame of reference [A/m2] 

Ja', Ja:    Free current density in the material frame of reference [A/m2] = 
[C/m2-s]; Jai = Jai - qV va' 

mai:  Rate of angular momentum gain due to interaction with other species 
within the same phase per unit mass density [N-m/Kg] 

mV:   Rate of angular momentum gain by constituent j in phase a due to 
interaction with phase ß [N-m/Kg] 

Ma': Rate of angular momentum gain due to the microscale angular momen- 
tum terms - see Appendix C [N-m/Kg] 

na:    Unit normal vector pointing out of a-phase within mesoscopic REV [-] 

pQi ^ pa.    polarization density averaged over a-phase [C/m2] 

q°', qa:    Charge density averaged over a-phase [C/m3] 

mai:     Rate of gain of angular momentum of consitutent j from other con- 
stituents in phase a [m2/s2] 
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qai:   Partial heat flux vector for the jth component of phase [J/(m2-s)] 

qa:    Heat flux vector for phase a [J/(m2-s)] 

q01*: Net rate of charge density gain by species j due to interaction with 
other species within phase a (does not include that gained to due mass 
transfer). [C/m3-s] 

Qa>: Rate of energy gain due to interaction with other species within the 
same phase per unit mass density not due to mass or momentum transfer 
[J/(Kg-s)] 

Qß',Qß-. Energy transfer rate from phase [subscript] to phase [superscript] 
per unit mass density not due to mass or momentum transfer [J/(Kg-s)] 

r: Microscale spatial variable [m] 

r"': Rate of mass gain due to interaction with other species within the same 
phase per unit mass density [1/s] 

t:    Time [s] 

T:    Temperature [°K] 

ta>:    Partial stress tensor for the jtfl component for phase [N/m2] 

ta:   Total stress tensor for the phase [N/m2] 

TV ,Tß-. Rate of momentum transfer through mechanical interactions from 
phase [subscript] to phase [superscript] per unit mass density [N/Kg] 

vaj va.    Velocity [m/s] 

6V:    Representative elementary volurr 

6Va:    Portion of a-phase in RF' 
waß:    Velocity of constit' -:rface between phases a and ß [m/s] 

x: Macroscale spatir' Lm] 

za':    Charge per unit mass density of constituent j in phase a [C/Kg], q"' = 

Z^, Za
ß: Rate of exchange of charge of constituent j from phase ß to phase 

a per unit mass [C/Kg-s] 

Greek Symbols 

7a:   Indicator function which is 1 if in mesoscopic region a and zero otherwise 

ea:    Volume fraction of a-phase in mesoscale REV [-] 
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e0: Permittivity in a vacuum. In MKS units, the permittivity has the value 
of 8.854 x 10~12 Farads per meter. 

ekim'   Permutation tensor 

Aa', Aa:    Entropy production per unit mass density [J/(Kg-s-°K)] 

£:  Microscale spatial variable which varies over REV for fixed x: r = x + £ 

M 
»?%77a:    Entropy [J/(Kg-°K] 

fj"'': Entropy gain due to interaction with other species within the same 
phase/interface per unit mass density [J/(Kg-s-°K)] 

0°3: Partial entropy flux vector for the jth component for phase [J/(m2-s-°K)] 

tf>a:    Total entropy flux vector for the phase [J/(m2-s-°K)] 

$gJ,$g: Entropy transfer through mechanical interactions from phase [sub- 
script] to phase [superscript] per unit mass [J/(kg-s-°K)] 

pai: Partial mass density of j*'1 component of a-phase [Kg/m3] so that eapaj 

is the total mass of jth constituent in phase a divided by the volume of 
REV 

pa: Mass density of a-phase averaged over a-phase [Kg/m3] 

aai: Induced curl of electric field of species j due to presence of other species 
within the same phase. See Faraday's law. [V/m] 

aaJ: Effect constituent j of phase ß has on the curl of the electric field of 
phase a [V/m] 

Appendix B.    Definition of Macroscopic Bulk Variables 

The relationships between tiv macroscopic constituent variables and their 
bulk counterparts follow: 

N 

pa =r 

:a' = P«i 

P»> 

N 

va = 

(B.l) 

(B.2) 

(B.3) 
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e°ß   =   Y,Ca%>, (B.4) 

^a     _     ^j-ai+goit)aj,a) (B.6) 

j=l 

AT 

pa   _   y^pa' (B-8) 
J=l 

A? = £>•, (B.io) 

3;   =   Ed? (B.11) 

^ = £>? (B-12) 
ff°    =    5^(Ha' - Pa> x t,°>'Q) (B.13) 

ä; = £&? <B-14> 
««   =   J^C*'**' (B.15) 

2; = f;c^(z?'+^^-a) (B.16) 

t°    =    ]T [*<*'-pa'-v0,'''at>o',ar]) (B.17) 

fla    =    £c«'0Bi, (B.18) 
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91 

f: 
N 

ma    = 

Ma   = 

e"    = 

<T    = 

3=1 

N 

^CaiMa>, 

(B.19) 

(B.20) 

(B.21) 

(B.22) 

(B.23) Y^Ca> (ea* + ^va''a -vai<a j , 

Y\ \qa* +ta' .v
ai'a-paiva»a (ea* + Uvai<a)A +va''aPa' ■ ET 

N 

Q%   = 

r = 
ba = 

n 
Aa 

£ C°*{ha' + (gai + gV) ■ «a,'a)> 

JV 

i=i 
N 

^2(<f,a' -pa'T]a'Va''Q), 
3=1 

JV 

3=1 

(B.24) 

(B.25) 

(B.26) 

(B.27) 

(B.28) 

(B.29) 

(B.30) 

(B.31) 

(B.32) 
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Appendix C. Relationship between Macroscopic and Microscopic 
Variables 

For notational brevity, define the volume average over phase a with angle 
brackets: 

< &>a (x,t) = -^r /„y (r,*)7«(r,*) Mi) (Cl) 

so that if for example, p> is constant throughout phase a then < (P >a would 
be that constant density. 

Similarly we define the mass average to be 

Thus for example, while the volume average of velocity makes no physical 
sense, the mass average (momentum) does. 

The relationships between the macroscopic constituent variables and their 
microscopic counterparts follow. There are no assumptions made about small 
fluctuations about the average. What follows is exact. 

pai    =    <(P>a (c-3) 
v*    =   ^T (C4) 

f«i    =   F° (C-5) 

(C.7) 

J°i    =    < JJ >° (C8) 
J°i    =    < jT >a + < g^V >a -«?'t>a' (c-9) 

Dai    =   <Dj>a (C-10) 
pa,      _     < pi ><* (C.ll) 

Eai    =    < Ej >° (C-12) 

ET   =   ^£a<E>^^f8vEäv (C13) 

<iV  =  <<£>* <ai4) 
?'=<$>* (C.15) 

aa'    =   <aj>a (c-17) 
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Ha'    = 

hß     = 

\w*\ J8Aaß 

< W >a + [Paj x va>- < Pj x vj >°] 

S' 

lß 

ta' 

9ai 

9i3 

t       = 

<h3>a 

=     Z3 

=   <qi>a+eapaizi?j   -eapa^iza' 

< tj>a +paiV
a'vai -pa'v^a+ < DjE>a -Da'ET 

+;U> [Eai ■ ET- < Ej -E>a]l 

91" 
£o 

mai 

na da 

q<*i 

i- [VET ■ Eai -<VE Ej >a -VEa* ■ ET+ < VEj -E>a] 

ij   + ¥via - f»'va' + -ij(Tj ET- <^E>a) 

^iki L., K+EDi - \€"E' •EI+"i"'Ks - ^ 

< mj >a -X [< P' x Ej >a -Pa' x Ea>] 
pi L J 

pai\SVa\ JSA    teWn,&^"' + Vl((^)n " "»*] "n *** 

-^ (e^'W^f) - [e>Q^i(eWm6v/)a] n 

+ [ea < ««„,&«£,>a] B + eVeWm&öf + ea < eWm&(i*>), >° 

+ea < ewm&O»^ + p^V*) >a 

2 2 />a> L J 

.     • 1  1 a 

< q> >Q + < V ■ v3 >a -ta' ■ va> + pa*vai(eai + -va' ■ va') - paivi(ei + -vi ■ vi) 

(C34) 

(C.18) 

(C.19) 

(C.20) 

(C.21) 

(C.22) 

(C.23) 

(C24) 

(C.25) 

(C.26) 

(C.27) 

(C.28) 

(C.29) 

(C.30) 

(C31) 

(C.32) 

(C.33) 

+ < E x H1 >a -ET xHa'+< P1vj ■ E>a -PQ'va' ■ ET 
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ha*    =   hi   +gi-vi   -gi   -vai 

e0   \dE*> IdE*   E\°,/dE      -\° dE-i 
dt 

■ Eai 

Qa>    = 

QV   = 

Qj   + i}. vj   -T* • vaj + {& + -vi ■ viyP   - (eJ + -vi ■ vi) ?"' 

+—\<hJ-E>Q-hai-ET] 
pai   L J 

+pi(ei + lvJ . VJ + ±£oEi ■ E)(wj
aß - «*)] ■ na da 

—5WT • L A     f(*
J)T + EDi ~ WEJ • W + pt^iKß ~ vj)] ■ n* da Pa>\SVa\   J$Aaß L 2 J 

+—*_ f       [(_ eo&E + e0(E
j ■ E)I) ■ v* + W xE]-na da 

(C.35) 

(C.36) 

iaß 

-TßET-vai -hap -ET 

r> 

=  vj 

trf>)a+paivairfi -pa'virfi 

Aa'    =   hf 

(C.37) 

(C.38) 

(C.39) 

(C.40) 

(C.41) 

(C.42) 

(C.43) 
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Multicomponent, Multiphase Thermodynamics of 
Swelling Porous Media with Electroquasistatics: 

II. Constitutive Theory 

Lynn Schreyer Bennethum *       John H. Cushman * 

October 23, 2000 

Abstract 

In Part I macroscopic field equations of mass, linear and angular mo- 
mentum, energy, and the quasistatic form of Maxwell's equations for a 
multiphase, multicomponent medium were derived. Here we exploit the 
entropy inequality to obtain restrictions on constitutive relations at the 
macroscale for a 2-phase, multiple-constituent, polarizable mixture of flu- 
ids and solids. Specific emphasis is placed on charged porous media in the 
presence of electrolytes. The governing equations for the stress tensors of 
each phase, flow of the fluid through a deforming medium, and diffusion of 
constituents through such a medium are derived. The results have appli- 
cations in swelling clays (smectites), biopolymers, biological membranes, 
pulsed electrophoresis, chromotography, drug delivery, and other swelling 
systems. 

Key words: porous media, mixture theory, electrodynamics, swelling, consti- 
tutive equations 

1    Introduction 
We continue our investigation into the form of the governing equations for a 
multiple-component, multiple-phase, polarizable, swelling porous medium with 
charged particles subject to an electric field. In Part I of this series we derived 
the macroscopic field equations under the assumption that it is the total elec- 
tric field which affects the species' conservation of momentum and energy. For 
simplicity we consider only a liquid-solid system. The mixture is charge neutral, 
although neither the phases nor species face this requirement individually. 

•University of Colorado at Denver, Center for Computational Mathematics, Campus Box 
170, P.O. Box 173364, Denver, CO 80217-3364. bennethum@math.cudenver.edu. To whom 
correspondence should be addressed. 

t Center for Applied Math, Math Sciences Building, Purdue University, W. Lafayette, IN 
47907. 
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To derive restrictions on the form of the constitutive equations, we follow 
[15, 16] and view fluxes as constitutive. In earlier work, Eringen [16] considered 
constituent electric fields throughout for a non-swelling porous medium; Huyghe 
and Janssen [20] considered a single electric field in a deformable two-phase 
porous medium with no exchange terms from the conservation equations; and 
Gu et al. [17] considered a charged swelling medium with no electric field. 

2    Constitutive Assumptions and the Entropy In- 
equality 

The full entropy inequality which is exploited in subsequent sections is present- 
ed in Appendix B. The basic notation is found in Part I so only new terms are 
defined herein. We assume the medium consists of a liquid phase (denoted by 
a = I), and a solid phase, (denoted by a = s), and that the medium is macro- 
scopically neutrally charged, however charges may move between constituents 
and phases. 

We assume that entropy generation must be non-negative for the total body, 
i.e. 

a     j 

Further we assume a form of local equilibrium wherein there is one temperature 
for all constituents and all phases, i.e. Ta*(x,t) = T(x,t) for all constituents j 
and all phases a. This effectively states that the rate of heat transfer between 
constituents is much faster than the time scales of interest to the problem. 

To couple the entropy and energy equations, it is necessary to relate the 
fluxes and sources of entropy to the fluxes and sources of heat. We assume the 
processes are simple in the sense of [15]. In this sense several possible relations 
are admissable. Among these are: 

V               j,                               rp (2) 

V         T                    T (3) 

a                       a                            a 

_ y, eaha 

a 
(4) 

The expressions in (4) have been used in [16], and the relations in (2) have 
been used in [1, 2, 3, 19]. More general expressions which simplify to the above 
are used in extended thermodynamics [21, 23]. The question is whether the 
processes governing the behavior of the constituents themselves, the individual 
phases, or the bulk material are simple. The assumption of any one of these 
does not imply any other due to microscale/macroscale relationships between 
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heat fluxes and heat sources [4]. This problem is complicated further because 
the macroscale definition of the heat flux depends on how one incorporates 
microscale fluctuations (see Part I, [4]). The differences manifest themselves ex- 
plicitly in the constitutive relations obtained for diffusive fluxes and the chemical 
potential. For example, if the relations in (4) are used then it can be shown that 
that the chemical potentials of two "different" species at equilibrium must be 
equal, which is inconsistent with Gibbsian thermostatics [12]. To the authors' 
knowledge, the relations in (2) do not result in any physical inconsistencies, and 
these are the relations used herein. 

Define the Helmholtz free energy for the species and the internal Helmholtz 
free energy for the bulk phase as 

N 

#h = e«i - TV
Q*       A" = ^2 CQ> Aa' (5) 

and introduce a modified Helmholtz free energy as 
N 

Aai = e«' - TV" - -^ET ■ Pa'       Aa = T/ C*>T', (6) 

where Cai is the mass fraction of constituent j in phase a given by Ca* = 
p<*i/p<*. The purpose of introducing the modified Helmholtz potential is to 
reduce the amount of manipulations required to obtain the entropy inequality, 
as either Paj or ET must be constitutive (dependent) variables. With this 
notation, eliminating (j)01', V*, Q%, Qaj, * J', and r}** from the entropy balance 
and re-writing it in terms of bulk-phase variables one obtains 

a a a 
N ~ 

+ !£ [£Q*a + E£a^ (AaiI + vai<ava*>a) ] : Vva 

a j=l 

N i 

+S5Z [£a*°3'+£apai -ETA-- Vw"i,a+53ia [2£°ET ■ E°] 
a   j=l a 

+ J2 — VT • La + 53 [pa'va'<a{Aai + ±va"a • va*'a) - ta* ■ va*<a] X 

W's ■ [ - elplT[ + jh {AliV{elp1') + \ET ■ Pl*V(elp1*) 
j=i p 

-elVET ■ P1' + \e0ET • El* Ve')] 
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N 

- £ £ £ £apairß [-57^ • -pQi+^aj+^Q + 5(«a,')a + |(»a"a)a] 

a   j=l 

where a comma in the superscript denotes difference (e.g. va's = va - v"), a 
superimposed dot denotes the material time derivative with respect to the solid 
phase (e.g. ea = dea/dt+vs-Vea), I is the identity matrix, and the contraction 
operator A : B is, in indicial notation, AijBij. 

We enforce many of the balance laws weakly using the Lagrange Multiplier 
approach [22]. The equations and their associated Lagrange multipliers are 
listed below. 

Lagrange 
Mult. 

Equation from [4] Lagrange 
Mult. 

Equation from [4] 

A? 
A 

Continuity Eqn a,, (42) 
Faraday's Law (55) Aff' Aqc 

Gauss' Law (49) 
Conserv. of Charge (68) 

Ampere's law is derivable from the conservation of charge and Gauss' law and so 
is not enforced directly. The expression corresponding to the Lagrange multipli- 
er A enforces charge neutrality locally. This restriction alone would imply that 
the total charge could vary in space. However we have in mind that the mixture 
is charge neutral initially everywhere so that it is assumed the time scale at 
which imbalances may occur is small compared to the time scale involved with 
other processes. 

The unknowns in this system include: 

el, pa\ va>, T, E°', £*, 
rß

i,ra\ta^ta,fa
ß
i,fa

0,T, 
Aa>, qa\ r)Q*, 
Pat     j"1     J**3     H<*J    -2ai      T<*i    £«j     7°' "', d   , dß , a \ oy, J ', q \ 4ß 

(8) 

(9) 
(10) 

(11) 

The variables in the first row, (8), are the primary unknowns. The remaining 
variables, (9-11), axe considered constitutive and are a function of constitutive 
independent variables. In order to close the system, one additional equation is 
needed, which corresponds to the unknown e'. This is known as the closure 
problem, and it arises from the homogenization of the microscopic geometry. 

(7) 
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To close the system we follow [1, 9, 11] and view the time rate of change of the 
volume fraction Del/Dt as a constitutive variable. 

The choice of constitutive independent variables is made based on knowl- 
edge of the system being modeled. Here we assume the fluid may behave as 
a Newtonian fluid and the solid as an elastic solid, hence we include the rate 
of deformation tensor, dl, and the strain tensor, £a. Since the solid phase 
may be disconnected, the macroscale strain tensor is not the average of the mi- 
croscale strain, but is defined in terms of the deformation gradient F = V0x, 
£s = ±(FJF3-I), where V0 denotes differentiation with respect to the macro- 
scopic material particle. Thus the strain tensor is a measure of the geometry of 
the solid phase. Further, we are particularly interested in modeling materials 
in which the solid and fluid phases have electro-chemical interactions, so that 
the behavior of the liquid phase may strongly depend upon its proximity to the 
solid phase. Thus we incorporate the volume fraction, e', as an independent 
variable. The independent variables which are used to define the constitutive 
variables include: 

e\ T, eapa\ «'•*, va»a, £s, ET, eaq?, 
Vel, VT, V(eapa>), dl, ua, W"', V£\ VET, 

j = l,...,N,        a = l,s   (12) 

where because the liquid phase may be polarizable and may depend strongly on 
the geometry of the solid phase [4], we have also included the vorticity tensor, 
ul = (V« — (Vu)T). Note that we have incorporated the total electric field 
as an independent variable, as opposed to the electric fields of each constituent 
or each phase. This is because it is assumed that all constitutive variables are 
measured with respect to the total electric field. 

The reason for incorporating the volume fraction into some of the indepen- 
dent variables is that this allows a direct comparison with more easily recogniz- 
able thermodynamic variables which are extensive. As an example, consider the 
extensive Helmholtz potential, A?, which is the volume of the REV multiplied 
by eapaAa. One definition of the chemical potential is, 

„«i = _£*L (13) 

where MQj is the total mass of constituent j in the a phase. Performing a 
change of variables to intensive variables [13] leads to 

., = ogf") (14) 

Thus in order to compare the two approaches directly, the appropriate inde- 
pendent variable is eQpa' and not pa>. A similar argument can be made with 
qe3- 
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To simplify the results we relax the Principle of Equipresence [26] and assume 
that the modified Helmholtz potential energies A are a function of a subset of 
the above constitutive independent variables: 

Äl = Äl(el, T, e'A »'■*, «'*', 6s, ET, e'«i', 

VT, V(eVO, d\ uf, W"') (15) 

A' = AS(el, T, e'p'i, «•'••, £s, ET, eaqs
e
d, 

VT, V(eVSi)> w*)- (16) 

We note that including the additional independent variables does not change 
the results if one modifies the definitions of pressure, chemical potential, etc. 
see e.g. [3]. The entropy inequality is now expanded in the traditional manner 
[9, 15, 18] and is presented in Appendix B. 

3    Non-Equilibrium Constitutive Restrictions 

The following variables are neither constitutive nor independent, 

E^fl, £££), *, ET, ,, W,   VT, (17) 

*.,-, V (P^P1), *", dl, *«, V&\ (18) 
Vx^.V^*, (19) 

where j = 1,..., JV for all variables not containing va*'a, since £J==1 p
aivaJ'a — 

0. Thus for example, vs',s is indexed from j = 1,...N - 1 in order to keep 
the list of variables independent. Since these terms appear linearly in the en- 
tropy inequality, their coefficients must be zero. This results in the following 
restrictions (corresponding directly with the terms in (17)): 

A? =Pa^r -T* - ±.ET-Pa',       j = l,...,N (20) p opa' pai 

-a 

« + *-'& _ (21) 

X>VW + ^)-° <22) 
a=l,s 

E^a = -E^öC <23> 
a a 

3=1 3=1 

(24) 
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ta* - -^-t8" = -(Pai • ET - ^PSN ■ ET)I - pSj{Xs/ - X*p
N)I 

»Mf+*'Wr = °> (26) 

where we have defined the effective stress tensor and hydration stress tensor as 

~s ~l 

tt = P°VF° ■ ^ • (VF*)T       tl
s = plVF° • |^ • (VFf, (27) 

respectively. The restrictions obtained from the coefficients of the variables 
listed in (18) indicate that the modified Helmholtz free energy is not a function 
of va''a, V(eapa>), vl,s, d\ ua, V«'''1, and the restrictions corresponding to 
the variables listed in (19) require that the Lagrange multipliers, A9e', A£

3, and 
\p must all be identically zero. 

Equations (20) and (21) define the Lagrange multipliers Xp3 and A"/, respec- 
tively. Equation (22) states that rj™ and T are dual variables with respect to the 
modified Helmholtz potential, and this is in agreement with [2, 16]. Equation 
(26) states that the modified Helmholtz potential of the entire system is inde- 
pendent of VT. 

Equation (23) implies that it is the polarization of the entire medium which 
is dual to the electric field in this representation. This is in contrast with [16] 
in which it is shown that the polarization of each component is dual to the 
constituent's electric field. The disparity results from our choice of independent 
variables - we use ET and Eringen uses Eaj as independent variables. 

We define the thermodynamic pressure by 

-x«    =   f>Q>'(A^+;P) (28) 

N    / f)Aa nai ffPa\ 
(30) 

where equation (29) is written in terms of the modified Helmholtz potential 
and (30) is written in terms of the classical Helmholtz potential. From (30) 
we see that this definition agrees with the classical thermodynamic pressure 
((pa)2dAa/(dpa)) only in the case where there is one constituent and polariza- 
tion is negligible for both constituents and for the bulk phase. In this case, ira 

is the same as the thermodynamic pressure in the absence of electric fields. 



138 

Swelling Porous Media with Electroquasistatics 

From (24), the solid-phase stress tensor is written as 

tiym = -f I + ti + frf - £ p°iV^V°"° + tfA - £ « |4j, (31) 

which is identical to that when ET = 0. Charges and the electric field enter into 
this expression through irs and through the effective and hydration stress ten- 
sors through A*. The role played by the effective and hydration stress tensors 
are discussed in [8, 6, 24, 25]. We remark that if the solid phase is considered 
incompressible then the material time derivative of pa* is zero, pa' is not consid- 
ered an independent variable, and Xs

p
j is the Lagrange multiplier which enforces 

the remaining part of the conservation of mass for constituent Sj. In that case 
we obtain the same results, except that 7r" is a primary unknown which must 
be handled directly. 

We define the electro-chemical potential as (see equation (14)) 

ß d(eQpa0 H dpai K   ' 

which does not incorporate the Lagrange Multiplier enforcing charge neutral- 
ity as is often done [17, 20]. With this definition and (25) we determine the 
relationship between the chemical potential and the partial stress tensors. By 
eliminating the Lagrange multipliers and using the definition of p*', (24) be- 
comes 

t°i - ^-tSN = {- p'Hp8* ~ p.aN)+pa*(Ä"J - A"") 
pSN ^ 

dAs      pa> _gw dA 
-P     ^717-^9 + (9ei-^e)A}l.   (33) 

L     d'qV      PSNHe   We" 

Summing these equation on j from 1 to AT and using 

N _ 

J2 pSjßBi = P°AS + na+ET-Pa 

(34) 

one obtains an expression for /x8jv, which when substituted back into equation 
(33) yields 

„*/-a«/-i*+i(«+£n)+*(A-^)/+i*"F-/. (36) 
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The first two terms on the right-hand-side form the classical chemical potential 
(see Bowen, [10]), although these terms are not scalars. In [7, 9] it was shown 
that the first three terms yield an appropriate definition of chemical potential 
when no electric field or charges exist. Changing the effective stress or hydration 
stress in a porous medium will result in a change in the chemical potential, which 
in turn would produce a different balance of species within phases. The fourth 
term on the right-hand-side is the classical electrical contribution [13]. At the 
macroscale we get additional contributions which, like the stress tensors, can 
produce a shift in phase-equilibrium of the species. See [9] for further discussion. 

In examining (36) we see that it does not make sense to both impose charge 
neutrality through the Lagrange multiplier A and to have qV as an independent 
variable. Either we have charge neutrality, in which case all terms involving 
dA* /{dqV) are dropped, or one drops the charge neutrality condition and sets 
A to zero. We shall continue to carry both terms for generality. 

Taking advantage of these relations and simplifying gives us the dissipative 
portion of the entropy inequality in Appendix A. 

4    Near-Equilibrium Constitutive Restrictions 

Equilibrium is defined to occur when the following variables, defined generically 
as xa, are zero: 

d\ il, vl<°, Vt>'"', va*'a, a = l,s       j = l,...,N-l      (37) 

VT, eV'#,wa,   elpl*Zlt,       a = l,s       j = l,...,N. (38) 

Using a dimensionality argument we can show that these variables are function- 
ally independent. Hence we have 

A(££v>rÄ")ß 9x° it d(xaxb) ±f 
> 0,       (39) 

where subscript e denotes equilibrium. Note that we have not incorporated 
r**3' and q°' into the above set. This is because without incorporating specific 
chemical reactions, incorrect results are obtained. 

So for example, considering xa = dl, we have at equilibrium 

tU-^'+rfA-Ep^. (40) 

To obtain results which hold near equilibrium, we expand linearly about equi- 
librium. For example 

N n~.1        N 

Uym + **I - «iA + £><<£^ + S>*W) 
\ j=i        oqe      j=1 / 
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«(4m + ^-9iA + EA^)e + /i:d' + /2e' + /3:Vr + ... 

(41) 

where f1 and /3 are fourth order tensors and /2 is a scalar. These linearization 
coefficients are functions of all independent variables which are not in the lists 
(37) or (38). In this manner one can obtain cross effects, e.g. [16], and nonlinear 
terms, e.g. [5]. We choose to linearize only about the one variable which produces 
a quadratic term in the entropy inequality, e.g. for the liquid phase stress tensor: 

4m « '«'I + fl£A - £ pWj^j. + » : dl - £) WW (42) 

where v is a fourth-order tensor. 
We note that in order to obtain equilibrium results the xa must be func- 

tionally independent. However near equilibrium, one can linearize about any 
independent variable which is zero at equilibrium. 

Defining pressure in terms of extensive variables to be pl == —dAT/(dV ) 

where AT is the total Helmholtz energy and V' the total volume of phase I, we 
can convert to intensive variables and show that this is equivalent to 

j i idÄ1 
(43) 

e'p'i.'r,... 

This pressure is equivalent to the thermodynamic pressure, 7r', only in the case 
of a single phase and single constituent. 

Using this definition and linearizing about e', we obtain 

M'«M =pl-p° + l£oET ■ (El - E°), (44) 

where pl is the linearization coefficient and is not to be confused with the electro- 
chemical potential. Thus if there are no effects of the electric field and p1 > p8 

the volume fraction will change so as to increase the amount of liquid phase. 
The last term involves the differences in the electro-stress tensor tß = DE — 
\e0E • EI (see the conservation of linear momentum equation in Part I). Thus 
if the contribution of the electric field of one phase is greater than the other, 
then the equilibrium volume fraction will be affected. 

Linearizing about VT and U3a yields the traditional results 

K-VT= Yl 1° <45) 
a=l,s 

e*t° = Qa : u>a, (46) 

where K and Qa are second order and fourth order tensors, respectively. The 
first is Fourier's law of heat conduction (where normally qa is defined with the 
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opposite sign) and (46) states that the stress tensors are not symmetric, which 
was known from the conservation of angular momentum (see Part I [4]). Cross 
effects can also be obtained [16]. 

Linearizing about the conservation of charge exchange term, Z'a , yields the 
following near-equilibrium result 

where G1' is the linearization constant. Thus, only if there is an imbalance in 
the electric-potential terms will charges from constituent j move from one phase 
to the other. Note that the Lagrange multiplier enforcing charge neutralitydoes 
not appear in this expression, since if the medium is charge-neutral and A are 
independent of qV, and assuming no cross-effects, no net charge is transfered 
between phases. 

Adsorption relations are obtained by linearizing about the rate at which mass 
is transfered from the solid phase to the liquid phase, elpl'£j. At equilibrium 
we obtain 

ph - n'i = 0. (48) 

so that phase-equilibrium is governed by the electro-chemical potential alone. 
Linearizing about equilibrium yields 

WKW+*(^-?$£)->*-* (49) 

where, by (47), the second term on the left-hand-side is zero at equilibrium. 
The relationship between the chemical potential and the partial stress tensor 

of the liquid phase is obtained exactly as in the previous section for the solid 
phase, except that the liquid phase result holds only at equilibrium: 

-A 

fi I = Ah I - ±-& + z1' IA - p1^ ) I + ±ET ■ PlI- (50) 
P P1' \ dqi j        P1 

5    Bulk-Phase Flow and Diffusion 

The equations which govern momentum balance in porous media are known 
as generalized Darcy's equations, after Darcy, who in 1856 empirically derived 
the rather simple relationship that flux is proportional to the gradient in fluid 
pressure: 

elvl'" = -KVpl+elplg, (51) 

where K is the conductivity of the material. It is generally thought to be valid 
for slow-moving viscous fluids through a homogeneous granular media.   We 
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would like to determine the generalization of this law for the swelling charged 
porous media considered here. To begin with, we linearize about vl,a and ob- 
tain a near-equilibrium expression for the exchange of momentum term, Ts, 
which may then be substituted into the conservation of momentum equation. 
Neglecting inertial effects and using (40) to eliminate tl we obtain: 

K ■ vl<° = -V(eV) + elpl(9
l + glj) + (pl + \e0ET ■ El)Vel + elql

eET 

-«V (./ + §!)VT - AV(eWe) - elp1^ : (W)r 

-V^-(V^-£V^-(V^). (52) 

The linearization constant K is positive definite by the minimization of entropy 
generation at equilibrium, and may be a function of all independent variables 
not equal to zero at equilibrium, including el. For a homogeneous rigid medium 
e' is constant, and if there is an absence of electric fields, gt is zero so that we 
recover Darcy's equations. The terms not involving the electric field have been 
derived before [3] and these results are discussed in detail in [8]. They indicate 
that flow can be driven by a gradient in the volume fraction and gradients in 
shear strain, the latter of which may be appropriate for swelling media with low 
water content. These terms account for the chemical/hydration forces between 
the solid and liquid phase. The term involving VT suggests flow in porous media 
can be driven by a gradient in temperature. In addition to these terms, we have 
the Lorentz force (e'^-Er), the Kelvin force (using equation (23)) elPl ■ VET, 
and a term enforcing charge neutrality, AV(elql

e). Further, a portion of the 
electro-stress tensor, l/2e0ET-El, magnifies the effects a gradient in the volume 
fraction has on the rate of flow. 

Diffusion in a single-phase mixture is governed by Pick's law, which states 
diffusive velocity is proportional to the gradient of the chemical potential. Here 
we derive a novel form of Fick's law. Begin with the coefficient of »'*•' in the 
residual entropy inequality which, when set to zero, gives at equilibrium: 

eap^(Ti +T°j)-eap°i(ia» +Ta
ß") = -V[e«pa'{Aaj -T")] 

-eaVET ■ (Pa* - ~PaN) + \eaET ■ (Ea* - ^E°N)Vea 

ca nai I FlA F)A     \ 

A   V(e"<£i) 

^-q?N)ET - £ata» ■ V (—^ 
■)<XN 

j = l,...,N-l. 

(53) 
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In addition we have from (15) 

- £ ~AlV(eV<) - «V|£ ■ < W)r - «V^; ■ VET 
3=1 

-p'^'^'^'Sf)^      (M) 

so that from the coefficient of vl's we have at equilibrium 

£VT1 = -e'p'VA1 + £><||v(ey'-) + EP'|4
V

(
£
'^) 

-AV(eVe)- (55) 

Summing (53) over j from 1 to AT and making use of the two forms of the 
chemical potential, (32) and (50), we obtain (56) for the case j = N. Substitut- 
ing this result back into (53) and again making use of (32) and (50) we obtain 
the equilibrium result: 

eV' (t + T'a) = -eV* Vfi - V ■ (eltl*) 

+eVe' vf A - p1^) - elVET • P1' + ^-V(elET ■ Pl) 
\ dqi J P 

.1   „i 
+ 6-(^-Pl-Pl*)-ETVT + el(?-rq

l
e-ql

e')ET + -e0ET-El*Vel 

-£-eldaET, (56) 

where da represents the phase exchange term in Gauss' law. If the electric field 

for species is defined appropriately, d3 is zero [4]. Note that as in the chemical 
potential, the Lagrange multiplier enforcing charge neutrality, A, appears in 
combination with dA /(dqlj) in the same manner throughout. 

Next we linearize about equilibrium using the coefficient of «'*■' in the 
original entropy inequality given in Appendix B. This allows us to obtain non- 
relative results since j = 1,..., AT. Here we make use of the fact that A and the 
primary independent variables, listed in (8), are the same at equilibrium and 

near-equilibrium. That this holds for A is justified by since A is not a func- 
tion of any of the variables which define equilibrium. We also assume that the 
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constitutive equation for Plj is the same at equilibrium and near-equilibrium. 

Using this result to eliminate elpl'{i ' +T/) in the conservation of momentum 
equation, neglecting the inertial term, and approximating /z'* using equation 
(50), we obtain 

tdÄl 

Rfivh,t = -e'p'iVß1* + elpl>(gl* - gj) - e'q'jV p n h L   dqi 

^eET - tph . ETVT + PyV(e<ET • P<) - ^ 

where Rl* is the linearization constant.  Recall that da is the exchange term 

from Gauss' equation, so that eldsET can be viewed as an additional body 
force, with the electric field producing the source. 

To analyze this further, assume that E is defined in such a way that da is 
zero, body force, glj is gravity, g, temperature gradients are negligible, and we 

enforce charge neutrality with the Lagrange multiplier, A, and that A is not a 
function of the charges, qlJ. In this case (57) simplifies to 

JRV
1
' = -£lpliVnl> + elp1' (g - glj) + e'^VA 

+4 V(e'£?r ■ Pl) + elP^-ql
eET. (58) 

The first two terms (on the right-hand-side) gives the standard Fick's law, where 
the body force has an additional term due to differences in ET and Elj. The 
third term represents the electric potential due to charge of the specie, but 
unlike [17, 20], the charge density appears outside the gradient, and not within. 
If the charge of the species per unit mass density, zl*, is constant, as is assumed 
in [17, 20], then we get agreement with [17, 20]. The last two terms involve 
bulk-phase forces weighted by the mass fraction, just as the gravitational force 
is weighted by the mass density. These terms are new and should be evaluated 
carefully, although similar bulk terms have been derived before, [2]. The first 
of the last two terms originates from the last term in the relationship between 
the chemical potential and the partial stress tensor, (50), and is a term which 
affects the chemical potentials of all constituents in the liquid phase. That 
it is weighted by a mass concentration is a consequence of the fact that the 
bulk phase velocity is a sum of the mass concentrations weighted constituent 
velocities. 

The last term in (58) comes from the energy work term e' Jli ■ ET. The 
presence of this term should be experimentally measured since it could easily be 
incorporated into the entropy source term in equation (2). If the work term were 
incorporated into the entropy source, the last term in (58) would not appear, 
no other relations would be affected, and there would be one less term in the 
dissipative entropy inequality which was not exploited here, 53a=i,s

£a,^Q ' &T 
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in Appendix A. Recall that (2) is an assumption, and although has been shown 
to give valid results for the case with no electric field, the exact form for the 
case considered herein is not known. This provides an excellent opportunity for 
determining the assumptions listed in (2) - any term in (58) which is determined 
to be not there physically could be absorbed (indirectly) into the entropy source 
or entropy flux. The remaining relations would then need to be modified in order 
to remain thermodynamically admissible. 

6    Discussion 

We exploited the entropy inequality to obtain constitutive relations for a swelling 
porous medium composed of a possibly polarizable solid and liquid phase, with 
charges and an electric field. We did so under the philosophy that it is the total 
electric field which contributes to the force and work terms in the conservation 
of momentum and energy terms, and that it is only the total electric field which 
is measurable. This produced an additional term involving the gradient of the 
volume fraction in the macroscale conservation of momentum equation, which 
manifests itself as an additional term in the generalized Darcy equation, (52). 
Further, the Lorentz force, Kelvin force, and charge neutrality (if enforced) also 
determine the overall flow rate. 

The Lagrange multiplier which enforces charge neutrality is shown to appear 
almost unilaterally with the change in modified Helmholtz potential with respect 
to the charge density (see e.g. (36)). Since the volume fraction and density 
are held fixed while taking this partial derivative, we see that the Lagrange 
multiplier is related to the change in energy with respect to charge density, and 
that which constituent the charge is associated with is irrelevant. 

The relation between the chemical potential and the partial stress tensors 
involves some novel bulk-scale quantities, see (36) and (50). These new terms 
affect phase equilibrium (see discussion in [9]), and affect diffusion, see (58). 
The exact form of the diffusion equation should be validated experimentally, 
and this would give a method for determining the exact form of the entropy 
source and entropy flux, which for this paper was assumed. 

Other results include that the rate at which the medium swells is determined 
by the difference in the thermodynamic pressures pl — ps and the difference of 
a portion of the electro-stress tensor, see equation (44). We also showed that it 
is the chemical potential which determines phase-equilibria (48), but that near 
equilibrium, the electric potential becomes a factor (49). Likewise we also note 
that the the stress tensor of each phase is not affected by the presence of the 
electric field other than through the dependence of the Helmholtz potential on 
the charged particles and electric field. 
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Appendix A.    Dissipative Entropy Inequality 

The dissipative portion of the entropy inequality is 
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(££VTÄ<% 

N 

dl : [eltiym + £eV'tW + «V - e'^A + £«V <# g-] 

W,s. {_ eW + ^)Vr - £'p'T's - eV|£Vs< 

-«Vfp : (W)T - eV|g; ■ (VBr)r - «'VJEfr • P< 

ax' 

N-l 

+\e0ET ■ EW - AV(eWe) - «V ^ • V2r] 

t,_PtiN+pipH )-p>,(A   -A   )I + 53 Vt>'"' : el 

j=i 
..-:* ~1 

*'«£-£*&>'-<*-$>>*' ötf 

k9/9^       op1 

p'< 
JV-1 

/^*/v       ma/v \ + E Ev°i,a• -^(« +^)+eTr +27) 

-V(eQ/9a>(A^ - Aa")) - eaVET ■ (Paj - ^P°N) 

2 

+P° ^'^W^^W^ 
°- - A) V (fßti") ~ W - ^N)Er - eH°» ■ V (£) ] 

9° + E (pa>va"a{Aai + i(«^,a)2) - *Q' ■ va'A 

X   dqc
e 

+ E?VT' 
v^^ii^r   •?'   -7s    .SU'    saÄ"    ,., ,9^'    Söä\ 

+ E E£V^[-A +^ -"'oy7+^V"z (PW"P W] 
a=l,s j'=l 

+IV
SJ-S . v»J>a V

lj'1 • Vli,t Vl,S ■ V1'3] 
2 2 2, 
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a=l,s j=l 

+ £ u,°: [£"c] + £ Epai ■ iETvQj ■ Ve1 
a=l,s a=l,s j=l 

L £«■«•" f=£ - AI+i-** ["■§ - Ä °'        (59) 

where subscripted sj/m and as mean the symmetric and anti-symmetric part of 
the tensor, respectively. 
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Appendix B.    Entropy Inequality 
The entropy inequality in its entirety is: 

J2 eapaTAa = 
a=l,s 

N Ds(eapa') 

a=l,s j=l 
Dt 

-eapa dA"    +X<?+Äai + -±-ET.P
a* 

d(eapa* 

+ET 

+f 

+dl 

+d° 

_ , idA__  s S9A 
QET OET 

elpl _ £sps 

-elplvl-elp^-e°p°r,°-e*Ps^ 

N 

3=1 

N __ 

eSta
Bym + £ ^P^ W1 + A'' J + **' Ki1 + V'W) 

j=l 

-elplVF° ■ ^ ■ (VF°f - e'p'VF* ■ ^ • (VF*f 

+ £-< 
a=l,s 

eatl 

+VT- ~elpl dA 

N-l 

+ EE 
a=l,s 3=1 

Dsva>'a 

Dt 
-eapa dA  ' 

£"P" dvr     r öVT 
AT 

a=l,a j=l 

■eapa dA" 
dV{eapai) 

+£' 
dA ,dA     l £'^'ir - eV^gr + §^ • * - §«.** • *• 

r.'.« ■«V dvl>< 

i n 

+« '.». 

+ d 
j. 

,     dA 

i idA 
-e p—r 

H ddl 

,dAl 

+ wl 
-elpl dA 

N 

9u>! 

9Ä' 

1=1 

,-:* .-:' W 92' -V^= <v«T - «Vg: • (v*)' - XVo'-^rV^;.) - £'VET . r< dET i=i      9{eWi) 



151 

Swelling Porous Media with Electroquasistatics 21 

elplTa + V(P + ±ET ■ Pl')V(elp1') + ±ET • ElVel + £ ty V(eV') 

TV <fl' +E^v(^)-^^-(W-> 

"-1    a!' 

AT c i 

a=l,s j=l •■ 

J3  £lVT •   QQ + £ (pa>V""^ + |(»a"a)3) - ta* • V^A 
a=l,s L J=l 

+ 5Z S vaj'a " [" £a^^5 - 5Z £°Pa^? - eV vT* + -ij-Br •pai V(eQpaO 

+ 

a=l,s j=\ ß*<* 

-eaVET ■ Pa> + \e0ET ■ Ea'Vea - ^ET ■ Pa*VT + AJ? V(eap°') 

+A^V(£Q^)-£Qe-BT 

a=/,« 

N 

_ T* - -^ET • paj - \{va"a? - \y 

-T - l(va'")2 - WZ«* 

+ £ jt,e"pai?™ f - A°j - -^ET ■pai - x°j - Z<*JX% _ ^a"a)2 
a=J,s j'=l 

eQA£ + 53 V 'D<* 

-^"WF)+""'+A 
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N 

A?«" 

D<*i . vea - eaq? - eaTJ - ]T eaTß
J 

ß±<* 

+ EEv**a 
a=l,8 j=\ 

+E i>2 

+ E EAS' • fVe°x Eai - £°aaj - E £a»ß 

+ E E^fv-(£a^Q)-£a^-E£a^'2? >o, 

where subscripted sym and as mean the symmetric and anti-symmetric part of 
the tensor, respectively. 
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V.   Numerical methods and examples 

1. Introduction to the Numerical Approach 

The study of coupling between stress and pore pressure in deformable, saturated porous 

media started with the work of Terzaghi [1], who proposed and developed a one dimensional 

consolidation model. Biot [2, 3, 4] extended this model to three-dimensional soil consolidation 

with physically consistent assumptions. Analytical solutions of consolidation problems based on 

Biot's theory have been developed by a number of researchers, e.g. Cryer [5]; McNamee and 

Gibson [6,7]; Gibson et al. [8]; Schiffman et al. [9] and Schiffman and Fungaroli [10]. In [5] and 

[6] the authors found that within the framework of the full Biot model, short time pore pressure 

in a poroelastic body loaded on the surface, could be higher than the surface load pressure. This 

was rationalized by noting that the tangential stress components take part in the pore pressure 

generation. This effect is specific to the full Biot model, and it differentiates Biot's model from 

Terzaghi's model. 

Unfortunately, analytical solutions are available for only a very few restricted situations. 

For more realistic problems numerical methods must be employed. Early finite element 

formulations for consolidation problems have been espoused by Sandhu and Wilson [11]; 

Christian [12]; Christian and Boehmer [13]; Christian et al. [14]; Ghaboussi and Wilson [15]; 

and Matsumoto [16]. In these articles the authors obtained numerical solutions of many 

important engineering problems. Christian [17] summarized and presented in a systematical 

form the methodical issues of the finite element method as applied to consolidation problems. 

The development and investigation of various methods of implementing the finite element 

method has continued over the years by many investigators such as Sandhu, Liu and Singh [18] 

and Reed [19]. 
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Booker [20] obtained the solution of settlement problem for a loaded layer by combining 

the Laplace transform and finite element method. A solution was obtained for different forms of 

load footing: strip, circle and square. Lewis and Schrefler [21], Safai and Pinder [22], and Kim 

and Parizek [23] applied the finite element method to consolidation for the problems related to 

settlement when pumping water or oil. Sandhu and Liu [24] and Budkowska and Fu [25] studied 

the application of the finite element method to consolidation of viscoelastic bodies. Khaled et al. 

[26] and Bai et al. [27] applied finite element method to simulate consolidation of porous media 

with dual porosity. Ng and Small [28] used the finite element method to study consolidation of 

unsaturated soil. The authors considered the high water content case (above 0.7-0.8) and 

reduced this model to the model of saturated soil with variable compressibility. 

Haghighi [29], Irudayaraj and Haghighi [30], Irudayaraj et al. [31] developed finite 

element model for related problems involving stress in drying bodies. In these articles the 

authors used viscoelastic equations coupled with equations of conductive heat and moisture 

transfer. The temperature expansion of material was taken into account as well. Hasatami and 

Itaya [32], Itaya et al. [33], Itaya et al. [34], Hasatami and Itaya [35] considered similar processes 

as [29-30], and developed similar finite element models. 

Nguyen and Selvadurai [36] and Selvadurai [37] developed the finite element technique 

to study rock consolidation in the presence of heat sources. In addition to the classical Biot 

consolidation equations, they included a convective heat transfer equation. Temperature was 

also taken into account. Zhou et al. [38] used to the finite element method to study mechanical 

hydro-thermo-moisture behavior in nonsaturated clay. In addition to the classical Biot's 

consolidation equations, their mathematical model included coupled convective heat transfer, 

moisture transfer, and vapor- and air- transfer.   Guvanassen and Chang [39] developed three- 
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dimensional finite element models for thermohydromechanical elastic deformation of fractured 

rock with convective heat transfer. 

Carter et al. [40, 42], Carter et al. [41] initiated finite element models for consolidation 

within finite deformation theory. Meijer [43] developed the Updated Lagrangian-Eulerian 

method for the same problem of consolidation with finite strain. The author used a moving finite 

element grid. 

Chopra and Dargush [44] used the finite element method for consolidation with plasticity 

at finite strain. They derived and used Updated Lagrangian-Eulerian equations for moving grids 

with linearization of the governing equations for each time step, before applying the finite 

element method. This linearization was used for the stress-displacement equations, but not for 

pore pressure-volume change equation. The authors applied this model to the problem of 

extension of a cylindrical cavity in the subsurface. 

Advani et al. [50] and Kim et al. [51] considered a coupled hydrothermomechanical finite 

element model of elastic-plastic media under thermal and mechanical loading at finite strain. 

They proposed updated Lagrangian-Eulerian equations via linearization, and then formulated the 

finite element model. 
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2. Finite Element Model of Consolidation Based on Biot's Classical Model 

The classical Biot model accounts for the stress field, infinitesimal strain and pore 

pressure in a linear deforming porous body that is saturated with an incompressible fluid, within 

the framework of the small deformation theory. 

The model includes: 

1) equilibrium equations; 

2) state equations for an elastic body; 

3) boundary conditions. 

The equilibrium equations in Cartesian coordinates are: 

OZL + F&^O, i=l,2,3;j = 1,2,3; (2.1) 
cbc, ox, 

dev 

dt 
-■Vp\, (2.2) 

Here x  are Cartesian coordinates, ov  are components of Cauchi stress tensor (tension 

stresses are positive), p is pore pressure (positive for compression of the porous media), Ft are 

3 dU 
components of the vector of volume force, t is time, ev = V—- is the volume deformation ((/,, 

i = 1,2,3 are components of the displacement vector), K is the permeability coefficient of the 

porous media, and p is the fluid viscosity. 

In geotechnical applications other forms of (2.2) are often used 

^ = div(k-Vh), (2.2') 
dt v ' 
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where h is the head, h = -±— (p is the fluid density and g is the gravitational constant), and k is 
PS 

the hydraulic conductivity, k = ——.  By introducing the head instead of the exceeded pore 

pressure, data may often be more easily understood. 

We will use (2.2) for the analysis and the seepage coefficient and head for data 

«««■an AMTnTi /%4^ presentation. 

The infinitesimal strain is 

1 
,J    2 

(dUt    dUj)  L + L 
^ dxj     dxt ) 

, ij = 1,2, 3,                                                                       (2.3) 

and we assume the Hookian stress field 

aiJ=Ä-Sijekk+2^-£iJ=Ä-Sijev+2/i-£iJ                                                                (2.4) 

Here A and // are Lame constants, which characterize the elasticity properties of the body; Sy 

is the Kronecker delta. 

Another equivalent form of Hook's law is 

av=3Kev, sy=2Gey,                                                                                         (2.5) 

■where W livl w 

cr,»4i>*                                                                                                            (2-6) 

is mean (hydrostatic) stress (one third of the first invariant of stress tensor), 

*=2>a                                                                                                                     (2-7) 

is the volume deformation (first invariant of the deformation tensor), 

Sy=ay-SyCTv, i,j = 1,2,3                                                                                 (2.8) 
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are components of the stress deviator (shear stress tensor), and 

ey=£y-\Sue*> U = U,3 (2.9) 

are components of deformations deviator (shear deformation tensor). Hook's law in form (2.5) 

establishes the proportionality between spherical parts of stress and strain tensors, and deviator 

tensors. 

Coefficients K and G (the modulus of volume deformation and the shear modulus) are 

connected to Lame parameters by relations 

2 
K = A + -/d, G = //. 

Two types of boundary conditions are use on the boundary r = rje)[Jr^) On Ty the 

displacements are assigned: 

U = U0, xer[e), 

while on T^ the normal effective stress is specified: 

Vij-nj-p-ni=ti, xeT\'. 

Here n is the unit outer normal to the body surface. 

Similarly for the fluid flow, T = T\p)[jr{
2
p), we specify 

while on ri^ the normal flux of fluid flow is 2 

K   dp r(p\ 

H drij 

It is also possible to represent sliding with traction.  We do so by fixing the tangential 

component of stress and letting the normal displacement vanish. 
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Below we consider the plane stress elasticity problem.   In this problem forces (both 

volume and surface loading) do not change in the X3-direction. Thus U3=o, and displacements 

Ux and U2 are invariant with X3. Hence 

£33=0, 

£\i — 
lfdU    dUA 'i.+^i 

dx3     dxx J 
= 0, 

lfdU,    duA 
en ~ „ 

Kdx3     dx2 j 
= 0, 

o"23 = 2G • e23 = 0.. cr13 = 2G-sX3 = 0,, 

These relations have many consequences. For example, one can deduce 

rr-     -r   o    ■   °"ll+Cr22 °yi = G-ev-\  ev = 
3{an+cx22) 
2(9K + G) ' 

9K-2G    , v 
CT33 = TT^TTTÄ" vCTi 1+ a22 j • 2(9K + G) 

At this point the main importance of these results is that the stress component CT33 can be defined 

independently, after defining {<?„},  ij = 1,2.    In this fashion the problem is reduced to 

finding   Ux, U2 and pore pressure p based on 

^ + /r-|Uo, i=l,2;j = l,2; 
ox, ox, 

d(dUx    dU2)_ d ( k    dp 
dt {dxx     dx2 )    dx\pg dxr) 

, i=l,2. 

(2.10) 

(2.11) 

Here {vA, ij = 1,2 is the Cauchy's plane stress tensor with er12 = <r2X by symmetry. We thus 

have by Hook's law relations (2.5) 



160 

t' ~ \ 

"22 

r      4 2 ^ 
K+-G   K--G   0 

3 3 
2 4 

K--G   K+-G   0 
3 3 

0 0 

(~ \ 

"22 (2.12) 

or 

a = De, (2.13) 

where 

a = >22 D = 

f      4 
K+-G 

3 

K-fo 
0 

K-|G 
4 

K + -G 3 

0 

0 e - 
H 

£22 

0 G 
) 

U12J 
(2.14) 

To implement the finite element method [48,49], we introduce the triangular grid (Figure 

2.1). We use the linear elements for pore pressure (see Figure 2.2) and quadratic elements for 

displacements (Figure 2.3). In such a way we associate to each element six standard quadratic 

basis functions {wa}, a=l,...,6 for determining displacement Ult six standard quadratic basis 

functions  \y/p\, ß = \,...,6  for determining displacement  U2, and 3 standard linear basis 

functions \<Pr\, Y = h 2, 3 for determining pore pressure p [48,49]. 

As usual we find the solution 
Pi) 

, p in form of a linear combination of basis functions 

W 
K 1       a ß 

P = Y.Pr% (2.15) 

Here 
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Na = 
0 

Np (2) '0} 

Jß. 

Using the Galerkin method the finite element equations are obtained by multiplying 

equation (2.10) at i=l on the basis function \]/a,, equation (2.10) at i=2 on the basis function 

\j/p/, equation (2.11) on the basis function <pT, and integrating by parts and applying Green's 

formula, for all of the functions \\ia,, v|/p,, and <py. 

The resultant is the system of linear algebraic equations for unknown coefficients 

U®, ug\ and Pr: 

= \Fx-y/a.dv+ \tx-y/a.ds, 
v dx\ r        v (2.16) 

ZWJ). &JLan (J?J))* + Zu? ■ &£„„ (*?> - EP, ■ J^* 
dx p v   "X2 dx 

\F2-y/p,dv+ \tlx-y/ß.ds, 
v rfr) 

(2.17) 

£ dt   } dxx 
Vr      4- dt   ) a*. *> p   dt    $ dx2 

v,„    tK [dq>  d<pr.      dq>   dcp .\ f + yp .  —. —r-—r— + —r- — dv=     q-<p ,ds 
*? r  J// \dxx dxx      <?x2 dx2)       ^ 

(2.18) 

Using a finite difference scheme in time, one can write equations (2.16) - (2.18) in the 

compact matrix form: 

Kn-U + AT12-F-C1-P = F1, (2.19) 

Kn>U+K„-V-C, P=E L21 >-22 2> (2.20) 
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c; U-U . „T v-v 
At 

+ C/-——-+H-ra-P + (l-a)-Pl =Q, 
A / L. -J Ar 

(2.21) 

where U is the vector of unknown coefficients {Ua}, V is the vector of unknown coefficients 

IvA, and P is the vector of unknown coefficients |Pr}. The overbar indicates t = tn + At; 

otherwise t = t„. 

Matrixes are 

Kn    Kn 

A21   Ä22> 

An A,2 

VA21 -^-22    . 

= jVyJ-D-ViyJv; 
V 

Cx = (Cf'«), Cf- = $£--V>Jr, 
v "Äi 

d\j/ß, 
C2 = (C?>),   C« = ^-9/tr, 

V<?X2 

v       7 *p\dxx dxx      ox2 dx2) 

where 

vy = 

dx. 

0 
dx^ 

^dx2    dxx J 

and D is the matrix (2.14). 

Let us rewrite equations (2.19)-(2.21) again in the form 

K-Ü-CP=F, (2.22) 

At 
+ H-[a-P+(l-a)-P]=Q, (2.23) 
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or more compactly 

K       -C    1 (tf 
CT   a-At-HjXp^ 

0 0 
CT   -(l-a)-At-H 

U 
At-Q) 

(2.24) 

which is adapted to the calculation of the solution at / = t„ + At based on known data for t -1„. 

Equation (2.24) is solved by decomposing matrix A at each time step into the product 

A = L-U 

of the lower triangular matrix L and upper triangular matrix U, using 

A-x = f 

with 

L-y = f and      U-x = y. 

We used subroutines dgbco and dgbsl from LINPACK [50,51], which employs Crout's 

decomposition with pivoting and back substitution [52]. 

For typical values of the elastic and permeability coefficients in poroelastic bodies, the 

matrix A in (2.24) is ill conditioned with condition number 10"8. This ill conditioning is closely 

related to the fact that matrix A incorporates large values of the elastic characteristics but small 

values of the permeability (see typical data in the test description below). Neither the flow nor 

elastic problem when considered separately is ill conditioned. 

The condition number may be increased [19] by rewriting the scheme (2.24) as 

K -s-C 

s-CT   s2-a-At-H 

0 0 
iT _2 s-C    -sz-(l-a)-At-H 

( U \ 

l-p 
+ 

sAtQ 
(2.25) 

VJ     J 

where we have introduced the parameters. This parameter is chosen in such a way to maximize 

the condition number. We are able to increase the condition number in typical cases from 10"8 

at s=l to 10"6 for optimal values of s. 
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All our results were obtained by applying of this procedure. It should be noted that the 

search for the optimum value of s, and Crout's decomposition are performed only once during 

the solution procedure unless the time step is changed radically. 
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3. Test of the Elastic Model for Biot Consolidation 

As a test we considered the one-dimensional consolidation problem for a column of 

elastic porous material, subjected to constant loading (see Figure 3.1). On the lower surface zero 

displacement is prescribed. On the vertical boundaries sliding without traction is imposed at 

zero horizontal displacement. On the upper boundary a uniformly distributed vertical load is 

prescribed. The upper boundary is drained with zero pore pressure, while the remaining 

boundaries are impermeable. The analytical solution to this problem is [54] 

8  Ä 1        (  iV/^ 
V = 1"T E T-«P 7t2&J2     '[       4 

(3.1) 

Here t* = -^r is dimensionless time, H is the column's height, cv =  is the consolidation 
H2 pga 

coefficient,   a = j—  is the compressibility of soil, and  V*=V/V„  is dimensionless 
K+--G 

3 

normalized settlement, where V is the settlement of the upper boundary of column at the current 

time, and VK=a-HF is full final settlement of the upper boundary after pore pressure 

dissipation. Also, F is pressure outside the top surface, and V' is sometimes called the degree of 

consolidation. 

We have used the test data of [18] h = 7, K = 10000, G = 2142, t2 = 190 (vertical stress 

component on the upper boundary) and the grid was the same as in [18]. In Fig. 3.2 a 

comparison of the numerical and analytical solutions is presented, V* - V\t*). The numerical 

solution differs from analytical less than 2%. 

We tested two versions of initial data 

U(x,y,0) = 0, p(x,y,0) = t2 (3.2) 
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(pore pressure at t = 0 is equal to the vertical stress); and the second initial data was obtained by 

solving (2.22), (2.23) adopted at t = 0, At = 0: 

K-U - C-P = F, (3.3) 

CT-U = 0. (3.4) 

These two initial conditions give rise to essentially the same results for t > 0. 
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4. Finite Element Model of Consolidation for Viscoelastic Media 

Following [54-58], we take the equations for consolidation of a viscoelastic porous 

medium in the form 

dx,     '       dt 

fd^ 

\dxU 

dp_ 

dxt 

= 0, 

dt 
= div 

(K      \ 

VM      ) 

Here  x\   is the viscoelasticity coefficient of the skeleton, and  TJ 

(4.1) 

(4.2) 

describes the 

viscoelasticity effects. We consider the plane stress viscoelastic consolidation problem. 

The boundary conditions for the part of boundary where loads are prescribed have the 

form 

_        de   _        _ „(e) 

By applying the Galerkin procedure and using the same basis and trial functions as earlier, one 

can see that the additional term arises in the left side of (2.16) 

„    dt      cbc,     dxl ß    dt      übe,     dx2 ' 

dU®  dVß-  dy/„      ^düf  dy,  dyt jj.Y 2 ■-£ LJS.+ 

a    dt     dx2     etc, 

and an additional term arises in the left side of (2.17) 

ß 

Thus one can write the resulting matrix equations as 

K-U+ 3~KvU-C-P= 3-Kv-U + F, 
At At 

dt     dx2    dx. 
fl'   "rß 

2 

(4.3) 
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At 
(4.4) 

(we take a = 1). Here the additional matrix Kv, which is related to viscoelasticity terms, is 

Kv = 
Kv„    Kv, 12      _ 

Kv2l   Kv22j 

KV?; "•"    Kv?2'
a 

yKv2l
,a    Kv22

a j 

where 

<*'■*•£*• v dxx    dxi 
12 J  /?v       ^v 

^--J^* 

dx,    dx* 

• dx2   ox2 v dx2    dxx 

We proceeded as in the previous section to compute the numerical solution, but we found 

considerable discrepancy with the analytical solution. So we changed the approach and instead 

of solving equations (4.3), (4.4) we solved the equivalent equation 

( 
K+^-Kv 

At 
CT 

-C 

At-H 

^ 
(SU\     (K-U-C-P-F\ 

ysp. At(H-P-Q 
(4.5) 

for increments 

SU = Ü-U, SP = P-P, (4.6) 

by applying the same matrix conditioning technique for equation (4.5). With this approach the 

numerical and analytical solutions were nearly identical. 

As a test we considered a one-dimensional problem of consolidation of viscoelastic 

porous material that had an analytical solution [54] 

f \ 

#    ,=1,3... I 

i n t 

4- 1 + w 
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Here the parameters are as in (3.1) with S = '-r the dimensionless viscoelasticity coefficient. 
/j.  H 

For the test we used the following data: H = 10, K = 1000, G = 1600, K/U= 0.001, 

t2 =10 (vertical stress component on the upper boundary). A series of tests were performed for 

the sequence of viscoelasticity coefficient 77 = 0, 10000, 20000, 50000, and 100000. This 

corresponds to values of the dimensionless parameter S = 0, 0.1, 0.2, 0.5, 1. In Fig. 4.1 we 

compare the numerical and analytical solution. As mentioned, results are in excellent agreement. 
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5. Finite Element Model for Consolidation of Viscoelastic porous media with additional flow 

due to capillary forces 

None of the previous models included the affects of colloidal swelling. Flow due to 

swelling is generally assumed proportional to the gradient of volume deformation [54-58] 

uf Vp - —p. -Vev 
M M 

(5.1) 

Here the first term in the right hand side is the usual Darcy flow, while the second term describes 

the additional flow due to volume fraction gradients. The material parameter p. has the 

dimension of pressure. The consolidation equations for viscoelastic porous media with the 

additional flow (5.1) have a form [54-58] 

 V- + E-T1  
ax,    '     dt 

'a^ 
Kax,; dx, 

dt 
K 

divl —-Vp    + div 
\M 

(5.2) 

(5.3) 

Using the decomposition (2.15) and applying the Galerkin procedure, we see that in the 

left hand side of (2.18) the additional term 

KP*  \[d(pr    d 

/j   1J dxx   &c, 

I dx2   dx2 

^f/O)^^^ VrrW3^ 
dx. IF, dx. 

dv + 

^ -  dx,     j? ß   dx2 
dv} 

arises. Thus the full finite element equations, as in development (2.22),(2.23) and (4.3),(4.4), have the form 

77  r...TT   ■   IT (5.5) 
K.fj + JLKVU - CP = ^-KvU + F, 

At At 

At 
^-Kc-U + HP = Q. 

M 
(5.6) 



171 

Here the "stiffness (sub)matrix" Kc for additional flow due to volume deformation is 

Kc = (KCfa, KCrß), 

where 

_   [d<Pr   &Va rd<pr    6>g Kc     =   f^L .£Jk fr +   filL.J^«- fr, 
*"      }dxl    dx\ } dx2   dx2dxx 

d<Pr    d2Vß   *, A   rd(Pr   5V/> 
dx-,    cbc 

p^j^L dv + r 
w      I cbc,   dxxdx2 

J 
dv. 

v v*2 

We rewrite equations (5.5),(5.6) to solve it for increments dU and dP (4.6). The modified 

system, as (4.5), has the form 

K+2-Kv     -C 
At 

CT+At-Kc   At-H 

'dU^ 
dP 

f     K-U-CP-F     ' 
At-(KcU + HP-Q); 

(5.7) 

a fashion similar to sec.3,4, we solve equation (5.7) by maximizing the condition number 

according to procedure (2.25), and then using Crout's decomposition. Maximization of 

condition number and Crout's decomposition is performed only once during the solution of (5.7). 

As a test case we considered a one-dimensional problem of consolidation for a column of 

viscoelastic porous material, similar to those in sec.3,4. The analytical solution of this problem 

has a form (see [54], where a similar problem is considered) 

y - i-p- 1 Fexp 
^    M.3..J 

I 71 t 
f   /Vs^ i+- 
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The   only   difference   between   here   and   sec.3   is   the   form   of   dimensionless   time 

' _ K 4 1    t and dimensionless viscoelasticity coefficient 

/ 

5 = ^-4 
ju H2 

1 + 4 
K + -G 

3 ; 

For the test we used the following data: H = 10, K = 1000, G = 1600, /c/// = 0.001, t2 = 

10 (vertical stress component on the upper boundary). Again a series of tests were performed for 

the sequence of viscoelasticity coefficients 77 = 0, 10000, 20000, 50000, and 100000, which 

correspond to values of dimensionless parameter S = 0, 0.1,0.2, 0.5,1. 

In Fig. 5.1 a comparison between the numerical and analytical solution is presented. 

Again results agree well. 
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6. Examples of Solutions for Two-Dimensional Problems 

Here we consider 2-d examples of problems with a strip load on the upper boundary, 

which may be in motion with normal as well as tangential stress. We first consider elastic and 

viscoelastic models with fixed grids. In Fig. 6.1 the modeled areas and grids are shown. The 

domain has the length L and thickness H and represents one half of the symmetric body. The 

surface is loaded by a strip of half-length b. We consider both drained and undrained surfaces. 

On the base zero displacements were prescribed: 

U = 0,  V = 0 at        0   x   L, y= -H. 

On the symmetry axis and the far boundary we had vanishing horizontal displacement and no 

shear stress: 

U = 0,   <r,2=0 at        x = 0,    -H <   y <   0       and 

x = L,    -H < y <   0. 

On the upper boundary away from the load, zero normal stress was prescribed: 

cr22=0   at   b< x < L, y = 0. 

For fluid flow the following boundary conditions were applied: 

- impervious bottom 

^ = 0at        0 < x <   L, y = -H; 
dn 

- impervious symmetry axis 

^ = 0at x = 0,    -H < y < 0; 
dn 

- zero surplus pore pressure on the far vertical boundary and the upper boundary away from the 

load 

p = 0  at        x = L,    -H < y <  0        and      b < x < L,   v = 0. 
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Two variants of boundary conditions were applied under the load 0 < x < b,  y = 0: 

a) for the drained case 

<r22=F, p = 0, 

and 

b) for the undrained case 

Two sets of initial data were considered. In the first the initial condition was calculated 

according to Biot's equations (2.22), (2.23), adopted for t = 0, At = 0 (3.3), (3.4), which in this 

case express the incompressibility of pore fluid at instantaneous loading: 

(6.1) 

(6.2) 

In the second case we used zero initial conditions 

U(x,y,0) = 0, p(x,y,0) = 0 (6.3) 

It is readily seen for sufficiently small At, the solution of the Biot problem (2.22), (2.23) with 

initial condition (3.3), (3.4) coincides with (or be very close to) that with initial condition (6.3). 

Numerical tests did confirm this. 

Soil data were K = 1600 t/m2, G = 1000 t/m2, rc/p = 0.01 m/day, which correspond to 

compacted loam. 

Figures 6.2-6.4 are for Biot's drained problem. Figure 6.2 displays isobars in the body at 

times t = 0.1 day, 1 day and 3 days with H = 20 m, L = 20 m, b = 10 m, and F = 10 t/m. These 

data illustrate the generation of pore pressure shortly after loading and dissipation of pore 

3^ 
dxj 

+ Fi- 
dp__ 
dxt 

= 0, 

dUk 

dxk 
= 0 • 
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pressure later via boundary drainage. Figure 6.3 shows the settlement and position of the upper 

boundary for the same problem. Figure 6.4 illustrates the change in the displacement field with 

time. In order to make this field more visible, modeled displacements were increased 20 times. 

Figures 6.5-6.7 are similar to Figures 6.2-6.4 except the loaded surface is undrained. 

For ease in comparison, Figures 6.8 and 6.9 have been drafted to illustrate the difference 

in the two models. In Fig. 6.8 the surface settlement at the center of the load is displayed, while 

in Fig. 6.9 the integral volume deformation is displayed. These data also characterize the full 

volume of compressed pore fluid. 

In Figure 6.10 the pore pressure is shown with strip tangential load on the surface. The 

footing of the load is drained. One can see that the pore pressure is symmetric, 

p(-x, y,t) = -p(x,y,t), with regard to the axis x = 0. In Figure 6.11 the settlement of the upper 

boundary is shown for the same problem. It also has the same symmetry 

V(-x,y = 0,0 = -V{x,y = 0,0- Figure 6.12 shows the displacement vector field with symmetry 

U(rx,y,t) = U(x,y,t), V(-x,y,t) = -V(x,y,t). 

Next we consider the case where the normal load is moving with constant velocity v. 

Results are shown in Figures 6.13-6.21. It is obvious that if the load is moved quite fast, the 

layer has no time to dissipate pore pressure and to recharge fluid, so the settlement and 

compaction of the layer is small. On the other hand, if the load is moved quite slowly, the layer 

has enough time to dissipate pore pressure, so in this case the settlement is close to a stationary 

load. The question is what is fast and what is slow. 

It is a well-known fact that for a stationary load the characteristic time of consolidation is 

4 
tx=H2lcv, where CV=K/(/U-O) is the consolidation coefficient and a = l/(K+—G) is the 

compressibility coefficient.   On the other hand, the characteristic time for the moving load is 
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t2=b/v, where v is the velocity of the load. So it is natural to measure time on the ti scale and 

to compare it with t2. The ratio of ti to t2 gives the dimensionless velocity v. = v • H2 /(cv • b). At 

tx=t2, the characteristic velocity is v = cv -b/H2. The data in Figs. 6.13 and 6.14 correspond to 

the dimensionless velocity v, =1; Figs. 6.15, 6.16 to v. = 2; Figs. 6.17, 6.18 to v, = 0.5; and 

Figs. 6.19, 6.20   to v. =5. 

In Fig. 6.21 we collect all data related to the settlement of the layer for the various cases. 

One can see that the settlement under a moving load is not symmetric with regard to its middle 

point. At fixed velocity the settlement increases monotonically along the loading surface from 

its front to the back, and has maximum at the rear. Subsistence is decreased as velocity 

increases. At v. = 0.5 the subsistence is very near that of the stationary load. The pore pressures 

in Figures 6.13, 6.15, 6.17 and 6.19 show the degree of consolidation. We depict in Figs. 6.22- 

6.25 dimensionless results for a moving load for four values of dimensionless velocity 

v. = 0.5, 1, 2, 5 and two values of dimensionless length of loaded surface, b/H = 10 and 

b/H = 5. In Figures 6.22 and 6.24 the ratio p/F is shown in dimensionless coordinates 

x/H, y/H.    In Figs. 6.23 and 6.25 the dimensionless settlement of the upper boundary 

V 
V,(x;y = 0) =  is presented. 

a-HF 

Fig. 6.26 illustrates the subsistance under the moving load when the move is just 

beginning. The solid line (at t = tO) relates to the stationary condition: the normal load is 

stationary for a long time before tO. Starting at t = tO the load is then moved with a constant 

speed v. The subsequent three curves show the subsistence at 1, 2, and 3 minutes after 

movement starts. 
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Next we consider the 2-d numerical solution of the consolidation problem using 

deforming grids. In Figs. 6.28 and 6.30 deformed grids are shown for the classical Biot model 

and for consolidation of the viscoelastic soil. In the Lagrangian framework the grid is updated at 

each time step according to the calculated displacement vector field. To make the results more 

visible, we considered a very soft (weak) ground and very heavy load. For comparison, Figures 

6.27 and 6.29 show deformed grids, which are calculated by using stationary grids. For the data 

used, a difference between the classical Biot's model and viscoelastic model is visible, but the 

two grids produce similar results. 

To check the importance of the viscoelasticity factor, a series of cases was studied with a 

stationary grid. In Fig. 6.31 the settlement of the central point under the drained normal load is 

shown for viscoelastic coefficient values //= 0, 1000, 3000, and 5000. These data show the 

viscoelasticity factor became important for quite high viscoelasticity coefficient values. 
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7. Summary 

We have presented finite element solutions for a number of consolidation problems 

ranging from elastic to viscoelastic coupled with flow including capillarity's swelling systems. 

These models have been tested against analytical solutions whenever possible and good 

agreement was obtained. 

Several novel test problems were considered for which there are no analytical solutions. 

The most interesting of these involves a moving load, consistent with vehicular traffic over a 

viscoelastic body, with both drained and undrained porous matrix. 
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Fig. 2.1. An arbitrary finite element triangle grid. 

Fig. 2.2. Linear basis functions in triangle, used for pore pressure approximation. 

A = area of entire triangle;     Ai = area of triangle opposite node i;     q>{ =At/A. 

Fig. 2.3. Quadratic basis functions in triangle, used for displacement approximation. 

\|/, =cp,(2<p1 -1),      \|/2=(p2(2cp2-l),    v|/3=(p3(2(p3-l), 

v|/4 =4(p2cp3, H/5 =4cp3q>, V6=
4<Pi<P2- 

Fig. 3.1. Scheme for 1 -d test problem. 

Fig. 3.2. 1-d test problem for classical Biot model. 

Displacement of the upper boundary,  V = V(t) (dimensionless V and t). 

Fig. 4.1.1-d test problem for consolidation model with viscoelasticity. 

Displacement of the upper boundary, V = V(t) (dimensionless V and t). 

Fig. 5.1. 1-d test problem for consolidation model with viscoelasticity and additional capillary 

flow. 

Displacement of the upper boundary, V = V{t) (dimensionless V and t). 

Fig.6.1. The scheme and the grid for consolidation problem for layer loaded on the upper 

boundary. 

H = 20m, 1 = 50 m, b = 10m. 

Fig. 6.2. Strip load. Drained loading surface. Pore pressure. 

K = 1600 t/m2, G = 1000 tint1, £ = 0.01 m/day, 

H = 20m,L = 50m, b = l0m,F = 10 tlm. 

Fig. 6.3. Settlement of the upper boundary V = V(x \ y = 0) of horizontal layer under drained 

strip 

load.    K = 1600t/m2, G = 1000 tlm2, k = 0.01 m/day, 

# = 20 ro, 1 = 50 m, b = l0m, F = lOt/m. 
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Fig. 6.4. Strip load. Drained loading surface. Displacement vector field, 

load.    K = \600tlm2, G = 1000 tlm2, k = 0.01 m/day, 

H = 20m, L = 50m, b = \0m, F = lOt/m. 

Fig. 6.5. Strip load. Undrained loading surface. Pore pressure. 

£ = 1600 tlm2, G = 1000 tlm2, k = 0.01 m/day, 

H = 20 m, L = 50 m, b = \0 m, F = 10 tlm. 

Fig. 6.6. Settlement of the upper boundary V = V(x \ y = 0) of horizontal layer under undrained 

strip 

load.    K = 1600 tlm2, G = 1000 tlm2, k = 0.01 m/day, 

H = 20m,L = 50m, b = l0m,F = \0tlm. 

Fig. 6.7. Strip load. Undrained loading surface. Displacement vector field, 

load.    K = 1600 tlm2, G = 1000 tlm2, k = 0.01 m/day, 

H = 20 m, L = 50 m, b = \0 m, F = 10 f//w. 

Fig. 6.8. Settlement under the central point vs. time. 

K = 1600 tlm2, G = 1000 tlm2, k = 0.01 m/day, 

H = 20 m, L = 50 m, b = \0 m, F = 10 f/m. 

Fig. 6.9. Integral volume deformation vs. time. 

£ = 1600 r/m2, G = 1000 tlm2, k = 0.01 m/day, 

H = 20m, L = 50m, b = \0m, F = \0tlm. 

Fig. 6.10. Strip tangential load. Drained loading surface. Pore pressure. 

K = 1600 tlm2, G = 1000 tlm2, k = 0.01 m/day, 

H = 20m,L = \00m, 2b = 20m, F = 10 tlm. 

Fig. 6.11. Settlement of the upper boundary F = V(x | v = 0) of horizontal layer under drained 

strip 

tangential load.   K = 1600 tlm2, G = 1000 tlm2, k = 0.01 m/day, 

H = 20m,L = \00m, 2b = 20m,F = 10 tlm. 
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Fig. 6.12. Strip tangential load. Drained loading surface. Displacement vector field. 

£ = 1600 tlm2, G = 1000 tlm2, £ = 0.01 m/day, 

H = 20m,L = \00m, 26 = 20 m, F = 10 tlm. 

Fig. 6.13. Moving load. Pore pressure. 

K = 160 tlm2, G = 100 tlm2, k = l m/day, 

H = lm, b = 10m, F = lOt/m, v = 60m/hour. 

Fig. 6.14. Moving load. Displacement of the upper boundary V = V(x | y = 0). 

K = \60t/m2, G = 100tlm2,k = l m/day, 

H = \m, b = 10m, F = lOf/m, v = 60m/hour. 

Fig. 6.15. Moving load. Pore pressure. 

K = \60t/m2, G = \00t/m2,k = lm/dzy, 

H = \m, b = \0m, F = 10 t/m, v = 120m/hour. 

Fig. 6.16. Moving load. Displacement of the upper boundary V = F(x | y = 0). 

K = 160 tlm2, G = 100 tlm2, k = \ m/day, 

H = \m, b = \0m, F = lOt/m, v = 120m/hour. 

Fig. 6.17. Moving load. Pore pressure. 

ÜT = 160f/m2, G = 100f/m2, A: = 1 m/day, 

H = \m, 6 = 10 m, F = 10 ^/m, v = 240m/hour. 

Fig. 6.18. Moving load. Displacement of the upper boundary V = V(x \ y = 0). 

K = 160t/m2,G = l00tlm2,k = lmlday, 

H = \m,b = \0m,F = 10 tlm, v = 240m/hour. 

Fig. 6.19. Moving load. Pore pressure. 

K = 160 tlm2, G = 100 tlm2, k = \ m/day, 

H = 1 m, b = 10 m,F = 10 tlm, v = 600m/hour. 

Fig. 6.20. Moving load. Displacement of the upper boundary F = V(x \y = 0). 
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K = 160 t/m2, G = 100 t/m2, k = l m/day, 

H = lm, b = \Om, F = 10 t/m, v = 600m/hour. 

Fig. 6.21. Moving load. Displacement of the upper boundary V = V(x \ y = 0). 

K = 160 t/m2, G = 100 tIm2, A: = 1 m/day, 

H = lm, b = 10m,F = lOtlm. 

Fig. 6.22. Moving load. Dimensionless pore pressure. b/H = 10. 

Calculated at   K = 160 t/m2, G = 100 t/m2, A: = 1 m/day, 

H = lm, b = 10m,F = lOt/m. 

Fig. 6.23. Moving load. Dimensionless displacement of the upper boundary.  b/H = 10. 

Calculated at   K = 160 t/m2, G = 100 t/m2, A: = 1 m/day, 

H = lm, b = 10m,F = lOt/m. 

Fig. 6.24. Moving load. Dimensionless pore pressure. b/H = 5. 

Calculated at   K = 160 t/m2, G = 100 t/m2, k = 1 m/day, 

H = lm, b = 10m,F = lOtlm. 

Fig. 6.25. Moving load. Dimensionless displacement of the upper boundary.  b/H = 5. 

Calculated at   K = 160 t/m2, G = 100 t/m2, k = 1 m/day, 

H = lm, b = 10m, F = 10 t/m. 

Fig. 6.26. Moving load. Dimensionless displacement of the upper boundary V = V(x \ y = 0) at 

time 

moments near the starting point. 

K = 160 t/m2, G = 100 t/m2, k = l m/day, 

H = lm,b = 10m,F = lOtlm, v = 120m/hour. 

Fig. 6.27. Classical Biot consolidation. Strip load. Drained loading surface. Deformed grid. 

(Small strain. The solution is calculated using stationary grid). 

K = 160 t/m2, G = 100 t/m2, k = 0.01 m/day, 

H = 10m,L = 50m, b = 10m,F = 100 t/m. 
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Fig. 6.28. Classical Biot consolidation. Strip load. Drained loading surface. Deformed grid. 

(Small strain. The solution is calculated using moving grid). 

K = \60t/m2, G = 100 t/m2, k = 0.01 m/day, 

H = 10m, L = 50m, b = l0m, F = 100t/m. 

Fig. 6.29. Consolidation of a viscoelastic body. Strip load. Drained loading surface. Deformed 

grid. 

(Small strain. The solution is calculated using stationary grid). 

K = l60t/m2, G = \00t/m2, 7 = 3000 t/m-day, fc = 0.01 m/day, 

H = 10m, 1 = 50 m, b = \0m, F = 100t/m. 

Fig. 6.30. Consolidation of a viscoelastic body. Strip load. Drained loading surface. Deformed 

grid. 

(Small strain. The solution is calculated using moving grid). 

K = 160 t/m2, G = l00t/m2, 7 = 3000 t/m-day, k = 0.01 m/day, 

H = \0m, L = 50m, b = \0m, F = 100 t/m. 

Fig. 6.31. Settlement of the central point vs. time for classical Biot and viscoelastic models. 

K = 160 t/m2, G = 100 t/m2, k = 0.01 m/day. 

H = \0m, 1 = 50 m, 6 = 10 » 
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An arbitrary finite element 

triangle grid 

Figure 2.1 



190 

Linear basis functions in triangle, 

used for pore pressure approximation 

Figure 2.2 
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Quadratic basis functions in triangle, 

used for displacements approximation 

Figure 2.3 



Scheine for 1-d test problem 
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//////////////////// 

Figure 3.1 
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1-d test problem 
for classical Biot model. 

Displacement of the upper boundary, V=V(t) 

(dimensionless V and t) 
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Figure 3.2 
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1—d test problem 
for consolidation model with viscoelasticity 

Displacement of the upper boundary, V=V(t) 

(dimensionless V and t) 
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1—d test problem 
for consolidation model with viscoelasticity 

and additional capillary flow 

Displacement of the upper boundary, V=V(t) 

(dimensionless V and t) 
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Figure 5.1 
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The Scheme and the Grid 
for consolidation problem 

for Layer Loaded on Upper Boundary 

H=20 m,    L=50m,      b=10m 

a) Drained Loading Surface 

>H  -10 

b) Undrained Loading Surface 

Figure 6.1 
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Strip Load. Drained Loading Surface. 
Pore pressure 

K=1600 t/m*m, G=1000 t/m+m, k=0.01 m/day 

H=20 m,     L=50m,      b=10m,    F=10 t/m 
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Figure 6.2 
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Settlement of the Upper Boundary V=V(x|y=0) 

of Horizontal Layer under Undrained Strip Load 

K=1600 t/m*m, G=1000 t/m*m, k=0.01 m/day 

H=20 m,     L=50m,      b=10m,     F=10 t/m 
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Figure 6.3 



199 

Strip Load. Drained Loading Surface. 
Displacement vector field 

K=1600 t/m*m, G=1000 t/m*m, k=0.01 m/day 

H=20 m,    L=50m,      b=10m,    F=10 t/m 
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Figure 6.4 
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Strip Load. Undrained Loading Surface. 
Pore pressure 

K=1600 t/m*m, G=1000 t/m*m, k=0.01 m/day 

H=20 m,    L=50m,      b=10m,     F=10 t/m 

{H -10 

i__i I I I i I 1 L 

>H     -10- 

>H    -10- 

t=0.1 day 

-i—|—i—|—r*-T—r-*i—i—|—i—|—i—|—i—T 
5        10       15       20      25      30      35      40      45      50 

I        ■ I I I I I L. 

t=l day 

1—i—I—"—I—i—I—r 
30      35      40      45      50 

Figure 6.5 
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Settlement of the Upper Boundary V=V(x|y=0) 

of Horizontal Layer under Undrained Strip Load 

K=1600 t/m*m, G=1000 t/m*m, k=0.01 m/day 

H=20 m,     L=50m,      b=10m,     F=10 t/m 
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Figure 6.6 
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Strip Load. Undrained Loading Surface. 
Displacement vector field 

K=1600 t/m*m, G=1000 t/m*m, k=0.01 m/day 

H=20 m,    L=50m,      b=10m,    F=10 t/m 
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Figure 6.7 
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Settlement under the central point vs. time 

K=1600 t/m*m, G=1000 t/m*m, k=0.01 m/day 
H=20 m,    L=50m,      b=10m,    F=10 t/m 
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Figure 6.8 
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Integral volume deformation vs. time 

K=1600 t/m*m, G=1000 t/m*m, k=0.01 m/day 

H=20 m,    L=50m,      b=10m,    F=10 t/m 
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Figure 6.9 
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Strip Tangential Load. Drained Loading 
Surface.   Pore pressure 

K=1600 t/m*m, G=1000 t/m*m, k=0.01 m/day 

H=20 m,     L=100m,     2b=20m,     F=10 t/m 
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206 

Settlement of the Upper Boundary V=V(x|y=0) 

of Horizontal Layer under Drained Strip 

Tangential Load 

K=1600 t/m*m, G=1000 t/m*m, k=0.01 m/day 

H=20 m,     L=100m,     2b=20m,     F=10 t/m 
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Figure 6.11 
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Strip Tangential Load. 
Drained Loading Surface. 
Displacement vector field 

K=1600 t/m*m, G=1000 t/m*m, k=0.01 m/day 
H=20 m,     L=100m,      2b=20m,     F=10 t/m 
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Moving Load. 

Pore pressure 

K= 160 t/m*m, G= 100 t/m*m, k=l m/day 

H=l m,   b=10 m,   F=10 t/m,   v= 60 m/hour 

t=0.0066 day=   9.5 min 
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Moving Load. 

Displacement of the upper boundary, V=V(x|y=0) 

K= 160 t/m*m, G= 100 t/m*m, k=l m/day 

H=l m,   b=10 m,   F=10 t/m,   v= 60 m/hour 
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Moving Load. 

Pore pressure 

K= 160 t/m*m, G= 100 t/m*m, k=l m/day 

H=l m,   b=10 m,   F=10 t/m,   v=120 m/hour 

t=0.0033 day=   4.75 min 
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Figure 6.15 
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Moving Load. 

Displacement of the upper boundary, V=V(x|y=0) 

K= 160 t/m*m, G= 100 t/m*m, k=l m/day 

H=l m,   b=10 m,   F=10 t/m,   v= 120 m/hour 
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Moving Load. 

Pore pressure 

K= 160 t/m*m, G= 100 t/m*m, k=l m/day 

H=l m,   b=10 m,   F=10 t/m,   v=240 m/hour 

t=0.00165 day=   2.37 min 
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Figure 6.17 
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Moving Load. 

Displacement of the upper boundary, V=V(x|y=0) 

K= 160 t/m*m, G= 100 t/m*m, k=l m/day 

H=l m,   b=10 m,   F=10 t/m,   v= 240 m/hour 
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Figure 6.18 
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Moving Load. 

Pore pressure 

K= 160 t/m*m, G= 100 t/m*m, k=l m/day 

H=l m,   b=10 m,   F=10 t/m,   v=600 m/hour 

t=0.00066 day= 0.95 min 
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Figure 6.19 
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Moving Load. 

Displacement of the upper boundary, V=V(x|y=0) 

K= 160 t/m*m, G= 100 t/m*m, k=l m/day 

H=l m,   b=10 m,   F=10 t/m,   v=600 m/hour 
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Moving Load. 

Displacement of the upper boundary, V=V(x|y=0) 

K= 160 t/m*m, G= 100 t/m*m, k= 1 m/day 

H=l m,   b=10 m,   F=10 t/m 
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Moving Load. 
Dimensionless pore pressure 

b/H = 10 

Calculated at 
K= 160 t/m*m, G= 100 1/111*111, k= 1 m/day 

H=l m,   b=10 m,   F=10 t/m 
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Moving Load. 

Dimensionless displacement of the upper boundary 

b/H = 10 

Calculated at 

K= 160 t/m*m, G= 100 t/m*m, k= 1 m/day 

H=l m,   b=10 m,   F=10 t/m 

Figure 6.23 
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Moving Load. 

Dimensionless pore pressure 

b/H =   5 

Calculated at 
K= 160 t/m*m, G= 100 t/m*m, k= 1 m/day 

H=2 m,   b=10 m,   F=10 t/m 
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Moving Load. 

Dimensionless displacement of the upper boundary 

b/H =   5 

Calculated at 
K= 160 t/m*m, G= 100 t/m*m, k= 1 m/day 
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Moving Load. 

Displacement of the upper boundary, V=V(x|y=0) 

K= 160 t/m*m, G= 100 t/m*m, k=l m/day 

H=l m,   b=10 m,   F=10 t/m,   v= 120 m/hour 
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Settlement of the central point vs. time 

for classical Biot and viscoelastic 

consolidation models 
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When a surface is placed in a vapor, several layers of molecules may adsorb depending on the intermolecular 
forces involved. As two such surfaces are brought together, a critical point is reached at which the gas 
condenses between the surfaces, forming a capillary across the gap. A cohesive force is associated with 
the condensed bridge. The reverse process wherein the capillary bridge degenerates as the surfaces are 
moved apart is called snap-off. These processes play a profound role on scales from the nano to the macro. 
We have studied this phenomenon via-isostrain grand canonical Monte Carlo statistical mechanical 
simulations for Lennard-Jones fluids. Specifically, we have examined capillary condensation and snap-off 
between nanocontacts, infinite rectilinear nanowires, and finite rectilinear nanoplatelets, where macroscale 
concepts and theories are just about impossible to apply. These results are compared to condensation 
between infinite parallel plates. We discuss our results in terms of the Kelvin equation and van der Waals 
film-thickening model. 

Introduction 

Unless very special precautions are taken, even carefully 
prepared surfaces are not clean; they are covered with a 
thin layer of molecules such as water and other contami- 
nants adsorbed from the atmosphere. When a critical 
distance separates two such surfaces, a liquid bridge 
spontaneously condenses across the gap. A cohesive force 
that tends to pull the surfaces together is associated with 
the condensed bridge. 

Capillary condensation of water around surface contact 
sites (e.g., in cracks and pores) can have a profound effect 
on the strength of adhesion joints! The mechanical and 
adhesive properties of many substances are very sensitive 
to the presence of even trace amounts of vapors in the 
atmosphere.1 For instance, in soils, concrete, and porous 
media in general, capillary forces can cause deformation 
of the solid phase, shrinkage, and cracking.2 In granular 
materials it has been proposed that thermal activation of 
capillary condensed bridges between nanoscale interstices 
on the rough particles is related to the observed increase 
in static friction between different layers of the granular 
system with time.3 

On the nanoscale, capillary forces are important in 
atomic force microscopy (AFM). When scanning hydro- 
philic samples under ambient conditions with AFM, the 
water meniscus between the tip and the sample formed 
by capillary condensation predominantly governs the force 
exerted by the tip of the microscope onto the sample. This 
makes it difficult to image soft samples in humid condi- 
tions. Working under very dry conditions will improve 

* To whom correspondence should be addressed. E-mail: curry® 
ag.arizona.edu. 

* Purdue University. 
5 University of Arizona. 
(1) Israelachvili, J. N. Intermolecular and Surface Forces, 2nd ed.; 

Academic Press: San Diego, 1992. 
(2) Bentz, D. P.; Quenard, D. A.; Baroghel-Bouny, V.; Garboczi, E. 

J.; Jennings, H. M. Mater. Struct. 1995, 28, 450. 
(3) Bocquet, L.; Charlaix, E.; Ciliberto, S.; Crassous, J. Nature 1998, 
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the performance of the tips, but electrostatic charging of 
tip and sample can then be a problem.4 However, capillary 
condensation is not always a disadvantage; it was recently 
shown that it is possible to deposit silicate nanostructures 
on a silicon surface by oxidizing the silicon in the capillary 
condensed bridge between the AFM tip and the sample.5 

Despite its importance in emerging nanotechnology 
applications, capillary condensation is still not well 
understood. Fundamentally, capillary condensation is a 
vapor-liquid transition shifted as a result of symmetry 
breaking. The Laplace pressure across the curved me- 
niscus acts to pull the surfaces together. The relationship 
between the equilibrium meniscus curvature and the 
relative vapor pressure is described classically by the 
Kelvin equation 

where y is the surface energy of the liquid-vapor interface, 
pip" is the relative vapor pressure, Vm is the molar volume, 
ks is the Boltzmann constant, T is the temperature, and 
Ri and Ä2 are the radii of curvature of the liquid-vapor 
interface. Practically* the Kelvin equation is routinely 
employed to predict pore size distributions in porous 
media, but it is known to be inadequate for nanoscale 
pores.6 In nanoscale devices we can envision menisci radii 
on the order of nanometers. Accordingly, it is important 
to understand the validity and applicability of the Kelvin 
equation for nanoscale capillary condensates. Much work 
has been done to determine the limits of applicability of 
the Kelvin equation.7-17 It appears that even though it is 

(4) Knapp, H. F.; Stemmer, A. Surf. Interface Anal. 1999,27, 324. 
(5) Garcia, R.; Calleja, M.; Rohrer, H. J.Appl. Phys. 1999,86,1898. 
(6) Seaton, N. A.; Walton, J. P. R. B.; Quirke, N. Carbon 1989,27, 

853. 
(7) Christenson, H. K.; Fang, J.; Israelachvili, J. N. Phys. Rev. B 

1989 39 11750 
(8) Christenson, H. K. J. Colloid Interface Sei. 1986, 104, 234. 
(9) FiBher, L. R; Israelachvili, J. N. J. Colloid Interface Sei. 1981, 

80, 528. 
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based on macroscale thermodynamic parameters, it is 
valid for very small menisci. Fischer and Israelachvili9 

have verified the Kelvin equation for cyclohexane con- 
densed between crossed mica cylinders for radii as small 
as 4 nm using a surface force apparatus (SFA). More 
recently, Kohonen and Christenson16 used the SFA to 
verify the Kelvin equation for water capillary condensates 
with radii as small as 5 nm. In an attempt to verify the 
Kelvin equation using computer simulation, Peterson and 
Gubbins17 concluded that the Kelvin equation overesti- 
mates the bulk vapor pressure for any reasonable choice 
of the meniscus radius of curvature for a cylindrical pore 
with radius five times the fluid diameter. However, the 
vapor pressure calculated from density functional theory 
agreed better with the Kelvin equation prediction. Miya- 
hara15 simulated a N2-like Lennard-Jones fluid in cylin- 
drical pores with diameters from 2 to 4 nm and found 
agreement between their molecular dynamics simulations 
and a modified Kelvin equation that incorporates the 
influence of the surfaces as well as curvature effects on 
surface tension. It is expected that molecular scale effects 
will invalidate the Kelvin equation for nanoscale menisci. 

In general capillary condensation has been studied for 
many years via experiments,7-9'18 theory,11'19-20 and 
computer simulations.21-22 In a series of studies, Gubbins 
and co-workers12-17,23 studied pore filling and emptying by 
incrementing the chemical potential, keeping the pore 
dimensions constant. Below a capillary critical point they 
observed hysteresis on both adsorption and desorption 
although hysteresis on desorption was later attributed to 
the neglect of pore end effects in the infinite pore models.24 

Gac et al.25 showed that pore wall surface energy 
heterogeneity causes differences in adsorption compared 
to that on homogeneous surfaces. 

In most capillary condensation simulation studies to 
date the pore consists of either two infinite parallel plates 
or an infinite cylinder with smooth (no atomic structure) 
walls. With these types of systems a meniscus can only 
be produced with canonical molecular dynamics simula- 
tions; therefore, few simulations have studied meniscus 
formation directly despite the effect on desorption hys- 
teresis. Heffelfinger and co-workers used molecular 
dynamics to create meniscii in infinite pores first with a 
temperature quench12 and then by changing the pore 
length while keeping the number of particles fixed.23 

Variations in the attractiveness of the walls have also 
been used to create a meniscus. The simulation cell is 
divided so that the middle of the pore represents a pore 
with finite length in one dimension and the ends of the 

(10) Crassous, J.; Charlaix, E.; Gayvallet, H.; Loubet, J. Langmuir 
1993 9 1995 

(11) Derjaguin, B. V.; Churaev, N. V. J. Colloid Interface Sei. 1976, 
54, 157. 

(12) Heffelfinger, G. S.; Van Swol, F.; Gubbins, K. E. Mol. Phys. 1987, 
61, 1381. 

(13) Marconi, U. M. B.; Van Swol, F. Phys. Rev. A 1989, 39, 4109. 
(14) Luedtke, W. D.; Landman, U. Comput. Mater. Sei. 1992, 1, 1. 
(15) Miyahara, M.; Kanda, H.; Yoshioka, T.; Okazaki, M. Langmuir 

2000,16, 4293. 
(16) Kohohen, M. M.; Christenson, H. K. Langmuir, m press. 
(17) Peterson, B. K.; Gubbins, K. E. Mol. Phys. 1987, 62, 215. 
(18) Curry J. E.; Christenson, H. K. Langmuir 1996,12, 5729. 
(19) Evans, R.; Tarazona, P. Phys. Rev. Lett. 1984, 52, 557. 
(20) Evans, R.; Marconi, U. M. B. Chem. Phys. Lett. 1985,114, 415. 
(21) Lane, J. E.; Spurting, T. H. Aust. J. Chem. 1980, 33, 231. 
(22) Van Megen, W.; Snook, I. Kv Mol. Phys. 1985, 54, 741. 
(23) Heffelfinger, G. S.; Van Swol, F.; Gubbins, K. E. J. Chem. Phys. 

1988, 89, 5202. 
(24) Papadopoulou, A.; Van Swol, F.; Marconi, U. M. B. J. Chem. 

Phys. 1992, 97, 6942. 
(25) Gac, W.; Patrykiejew, A.; Sokolowski, S. Surf. Sei. 1994, 306, 

434. 
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cell are the reservoirs. Papadopoulou et al.24 took the walls 
bounding the reservoirs to be purely repulsive while 
Miyahara et al.16 employed a potential buffering field at 
both ends of the pore that vanished linearly. No simulation 
has included the edges of the particles explicitly. Ad- 
ditionally, most studies have focused on adsorption and 
capillary condensation in pores of fixed width as a function 
of bulk vapor pressure; however, in SFA studies, where 
direct comparison may be possible, the surface separation 
is varied at constant chemical potential. The dimensions 
of the contact area must also be important, and indeed in 
recent AFM studies with carbon nanotube tips capillary 
condensation only had a minimal influence on the 
measurements.26 To our knowledge simulations have not 
been used to study the formation and snap-off of a capillary 
condensate between nanoscale contacts where the size of 
the contact area is important. 

With these motivations we have used Monte Carlo 
computer simulations in the isostrain Grand canonical 
ensemble to study capillary condensation between finite 
structured nanowires and nanoplatelets. We find that as 
the dimensions of the nanocontacts decrease, the surface 
separation that can support a liquid condensate decreases. 
We find that capillary condensation is preceded by 
accumulation of a dense vapor between the surfaces. The 
menisci in these nanoscale contacts are diffuse, and snap- 
off occurs as a gradual decrease in liquid density across 
the gap rather than a sudden disappearance of the 
condensate as the gap width gets larger. 

Model. The simulation model consists of a Lennard- 
Jones gas in equilibrium with two surfaces constructed 
from the 100 plane of a face-centered cubic lattice that are 
parallel to one another and perpendicular to the 2-axis. 
Fluid and wall atoms are identical, spherical, nonpolar, 
Lennard-Jones (LJ) atoms with mass taken to be that of 
argon characterized by diameter a and interaction energy 
e. To take into account interaction beyond the first layer 
of surface atoms, each surface is comprised of five layers 
of atoms. Figure 1 shows atomic representations of the 
three surface models employed. Nanoplatelets that are 
finite in both the x andy directions are shown in the upper 
panel. The nanoplatelet surfaces are square with the x 
andy dimensions being 31 and 51 or, as shown in the figure, 
10Z where I is the length of a unit cell, taken to be 1.5985a. 
The simulation cell includes the platelets and the space 
both between and outside the platelets, and is outlined by 
solid white lines. The region outside the platelets extends 
51 from the surface edges in the* andy directions. Periodic 
boundary conditions are applied in all directions in order 
to simulate an infinite system. The middle panel shows 
the infinite rectilinear nanowires that are finite in the x 
direction but effectively infinite in they direction. In the 
x direction the simulation cell consists of surfaces 31, 51, 
or 101 in width bounded by 51 regions on either side. The 
width of the cell in the y direction is 51, and periodic 
boundary conditions are applied to simulate the infinite 
wire. The infinite slit pore, which has been studied 
extensively for the past 20 years,27 is shown in the lower 
panel. The length of the sides of the simulation cell is 5/. 
Periodic boundary conditions are employed in the x and 
y directions to model the infinite slit pore. 

The total potential energy of the confined fluid is 
approximated as a pairwise sum of shifted force Lennard- 

(26) Woolley, A T.; Guillemette, C; Cheung, C. L.; Housman, D. E.; 
Lieber, C. M: Nature Biotechnol. 2000, 18, 760. 

(27) Schoen, M.; Diestler, D. J.; Cushman, J. H. J. Chem. Phys. 1987, 
87, 5464. 
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Table 1. Reduced Units 

• 

Figure 1. Schematic of the (a) nanoplatelet, (b) nanowire, and 
(c) infinite slit pore systems. The solid atoms are shown as 
spheres, and the solid white lines outline the simulation cell. 
The infinite slit pore is finite in the z direction only, the 
nanowires are finite in both the x and z directions, and the 
platelets are finite in all directions. 

Jones (12,6) interactions with radial cutoff rc = 4.0a.28 

The interaction energy between atoms i and j is 

tW = 4« w-®- U(rc) U'ir^j ■ 

(1) 

h* = hla 
T* = kTk 
ft* = /xk 
P* '■ pa3 

for r <rc and 0 otherwise. U{r) is the usual full Lennard- 
Jones potential. Reduced dimensionless variables, defined 
in terms of the Lennard-Jones well depth e and "diameter" 
a, where e/fcB = H9.8 K and a = 3.405 Ä, are used 
throughout (see Table 1). 

The distance between the pore walls, h, is measured 
from the center of the surface layer of wall atoms. The 
relative lateral alignment of the walls, or registry, in the 
x andy directions must be specified to uniquely define the 
system. The coordinates of the wall atoms are related as 
follows: Xiw = xP; y,(2) = yP; z/2) = z/1' + h, where the 
superscripts (1) and (2) refer to the lower and upper walls, 
respectively. 

Structural features are presented in terms of a local 
density, fAxy^z), which is calculated as 

pixy#) = (N(xy^z))/AxAyAz (2) 

where (N(x,y^)) is the mean number of fluid atoms in a 
cell of size AxAyAz centered on x, y, z. Here x and z run 
over the entire computational cell andy is either 0 for the 
midplane or 0.5 for the midplane shifted by 0.5Z. For these 
simulations Ax = A> = Az = o/20. 

Bulk simulations are also conducted for this Lennard- 
Jones fluid in order to construct an adsorption isotherm 
so that the chemical potential corresponding to the gas- 
liquid transition can be identified. The chemical potential 
is chosen so that the bulk fluid is in the vapor phase for 
all simulations. 

A standard grand canonical Monte Carlo simulation 
scheme is used.27,28 The number of equilibration steps is 
approximately 106, and the number of production steps is 
greater than 60 000 times the average number of atoms 
in the simulation. The simulations at each pore width are 
independent in that each simulation begins with no atoms 
in the cell. With this approach, metastable states are 
avoided. 

Results 

While Lennard-Jones fluids have a very elementary 
potential (van der Waals attraction and Born repulsion), 
they exhibit incredibly complex and anomalous behavior 
when confined in at least one dimension at the molecular 
scale.29 Among these unusual behaviors are order- 
disorder transitions, second-order liquid-solid phase 
changes in monolayers confined to slit pores, stick-slip 
phenomena, layered structuring, destruction/formation 
of nanocapillaries as a function of shear strain, anomalous 
(fractal) diffusion in monolayers, and strain-induced 
liquefaction. 

Though the potential is mathematically simple, com- 
putationally it presents considerable numerical difficul- 
ties, especially near critical points. Specifically, when using 
Monte Carlo simulators, the realized Markov chain is often 
nonergodic on any reasonable computational time frame. 
This is illustrated by the bulk adsorption isotherm shown 
as the squares in Figure 2. For comparison the adsorption 
isotherm for a fluid in an infinite pore at h* = 4.8 is also 
plotted as circles. When moving to the right on the phase 
diagram (as a function of increasing chemical potential), 

(28) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; 
Clarendon: Oxford, 1987. 

(29) Cushman, J. H. The Physics of Hierarchical Porous Media: 
Angstroms to Miles; Kluwer: New York, 1997. 
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-12.4 -12.0 -11.6 -11.2 -10.8 

Figure 2. Adsorption isotherm at T* = 1.0, h* = 4.8, and 
registration a = 0.0 for an infinite slit pore with surfaces five 
atomic layers thick (•), and the corresponding bulk phase 
condensation isotherm (■). The chemical potentials used in the 
simulations are marked as dashed lines on the plot and are 
clearly outside the bulk phase hysteresis loop. 

the bulk gas-liquid transition occurs near —p* — 11.1 
while, when moving toward the left, it occurs at ~-//* = 
11.35. The appearance of the hysteresis loop always 
manifests near critical points, even though we know the 
Markov chain underlying the Monte Carlo method is 
ergodic (in the asymptotic limit) and even though we know 
from classical statistical mechanics30 that such hysteresis 
loops cannot exist at equilibrium (except through some 
mathematical approximations to the true dynamics, such 
as with the van der Waals approximation, which results 
in van der Waals loops). Running much longer simulations 
can reduce this hysteresis loop. It is interesting that when 
a Lennard-Jones fluid is confined in at least one dimension 
on a molecular scale, these loops are reduced in size. But 
in any case, the results to be presented are for a fluid 
which is well into the gas regime (-/** = 11.7,11.4, marked 
as dashed lines in Figure 2), outside the computationally 
induced hysteresis loop for the bulk fluid. 

We used computer simulations. to investigate the 
condensation of a Lennard-Jones vapor between infinite 
parallel plates, nanowires, and nanoplatelets. The struc- 
ture of a fluid confined between infinite parallel plates 
has been extensively studied,29 and we will discuss it in 
comparison to the rectilinear wires and platelets. The fluid 
structure is most easily discussed in terms of the local 
density. Consider first liquid condensation between two 
closely spaced nanowires. Figure 3 shows the local density 
in the x-z plane at a succession of six interwire separa- 
tions, h* = 3.4,4.3, 5.0, 5.6, 6.1, 6.3. This particular wire 
is 5 unit cells wide and of infinite length perpendicular 
to the page with/** = -11.7. As shown in the scale in the 
figure, red indicates the highest probability of finding an 
atom and blue the lowest, except black indicates zero 
probability. The entire simulation cell is large enough so 
that at the outer edges in the lateral (*) direction the fluid 
density is equivalent to that of the bulk vapor. The vapor 
phase is then in equilibrium with the condensed fluid 
phase perturbed by the solid. In general, as the interwire 
spacing is increased, the dimensions of the condensed fluid 
change. The condensate becomes elongated in the z 
direction and narrower in the x direction. The condensate 
eventually disappears for large enough spacing. 

In more detail, we have shown panel a corresponding 
to h* — 3.4 because it displays a characteristic phenomenon 
typically found when the fluid can epitaxially align with 
the solid and when h*, p*, T*, and the relative registry 
are consistent with the formation of a solid phase. In this 
particular panel the fluid is essentially frozen into a solid, 

(30) Hill, T. L. An Introduction to Statistical Thermodynamics; 
Addison-Wesley: Reading, MA, 1960. 
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commensurate with the fee structure of the wire. Between 
the surfaces, fluid can only diffuse in regions that are 
nonblack; thus, there is essentially no diffusion in the 
interior. However, near the edges, there is a diffuse cloud 
around the lattice sites indicating increased mobility, that 
is, hopping between lattice sites. At this chemical potential 
two layers.of fluid cover the external surfaces of the wires. 
The layer closest to the solid is well ordered, and the fluid 
occupies localized lattice sites. The second layer is more 
diffuse but with the highest density at appropriate lattice 
sites. Beyond two layers, the system behaves essentially 
as the bulk. At this surface separation the layering of the 
fluid on the external surfaces is only slightly disrupted by 
the presence of the fluid-filled space between the wires. 
The layering on the external surfaces is essentially 
continuous, connecting the wires smoothly together. 

In panel b, h* = 4.3, a fourth layer between the surfaces 
is being formed and the fluid is liquidic. The surface layer 
atoms diffuse into and out of the central layers, and the 
two central layers of atoms hop very frequently back and 
forth. The highest probability of finding an atom in either 
of the two central layers lies at the lateral lattice sites for 
a single central layer (panel a). In other words, if you took 
the central layer and spread it in the z direction in panel 
a, and added roughly the number of atoms in a layer, then 
you obtain an approximation for panel b. Panel c depicts 
a completed four-layer system (ft* = 5.0) that is again 
liquid; however, the contact layers are much less mobile 
than the inner layers. You can see the beginning of the 
formation of a meniscus on the lateral edges between the 
wire surfaces, though it is poorly defined. In panel d we 
see the addition of a fifth layer (A* = 5.6). There is the 
highest probability of finding atoms on the fee lattice 
sights, though the fluid is liquidic. Note that in the central 
layer only the two most inner lattice sites have a high 
probability of being occupied. The two outer sites are 
diffusely occupied. A similar statement can be made about 
the second inner layer, but in this case the three most 
central lattice sites are occupied with higher probability 
than the two outer sites. Panel e (A* = 6.1) shows the 
beginning of capillary snap-off, that is, when the interior 
region begins to gasify. The innermost layer has disin- 
tegrated, with only the slightest vestiges of the central 
lattice sites being visible. By panel f (A* — 6.3) snap-off 
has occurred. Note that the fluid which is centrally located 
between the two surfaces is gaseous, but with a density 
slightly higher than that of the bulk phase. Additionally, 
order in the second layer of fluid remains enhanced by the 
presence of the gaseous fluid. The second fluid layer 
becomes as diffuse as the second layer around the outside 
of the nanowire with further surface separation. The 
transition between a liquidic state for the inner layer fluid 
and the gaseous state does not appear to be abrupt, but 
rather a somewhat gradual change with surface separa- 
tion. The process is of course reversible. 

Figure 4 shows a more detailed view of snap-off and 
condensate evaporation for interacting nanowires three 
unit cells wide at fi* = —11.7 for interwire separations 
ranging from ft* — 5.2 to 5.9. The wires are connected by 
a four-layer liquidic condensate at ft* = 5.2. As the surfaces 
are separated, the density decreases and a diffuse fifth 
layer is added at ft* = 5.4. The meniscus curvature is not 
smooth but rather is a series of steps corresponding to the 
fluid layers. This is more pronounced for the 3-wire case 
compared to the 5-wire case in Figure 3 where the 
meniscus is more smoothly rounded. As the surfaces are 
further separated, the condensate remains layered, and 
from A* - 5.5 to 5.9 the central fifth layer gradually 
evaporates. The vapor density between the surfaces as 
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Figure 3. Maps of two-dimensional slices through the three-dimensional, ensemble-averaged particle density in the plane y - 
0 for,«* = -11.7, T* = 1.0, a = 0.0, and h* = 3.4, 4.3, 5.0, 5.6, 6.1, and 6.3 for the fluid condensed between nanowires five unit 
cells wide. 

well as the density of the second layer of fluid wetting the 
surfaces remains enhanced even though the liquid con- 
densate is no longer present. Considering the process in 
reverse, these illustrations also show that as surfaces 
approach in vapor the vapor density as well as the density 
of the second layer is enhanced before a fluid condenses 
between the surfaces. 

Figure 5 is similar to Figure 4, except that in Figure 5 
the chemical potential is increased to^* = -11.4. In this 
latter case the sequence of panels goes from h* — 8.7 to 
9.4 and indicates the increasing size of the capillary 
condensate with increasing vapor pressure. The fluid is 
clearly layered within the condensate; for instance, at h* 
= 8.7 eight fluid layers can be distinguished in the center 
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of the condensate. There is also inplane order within the regions of high density within the layers that correspond 
three layers adjacent to each surface, as evidenced by the     .   to discrete lattice locations. At h* = 9.0 the two middle 
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layers are no longer distinguishable and the fluid density 
appears homogeneous in the center of the condensate. 
The condensate narrows with increasing surface separa- 
tion and snaps off between h* = 9.3 and 9.4. At h* = 9.3 
the two layers adjacent to the surfaces are still highly 
ordered but inplane order in the third layer is no longer 
present. For/** = -11.7 discussed above, the condensate 
was never larger than three molecular layers and the 
condensate remained layered until snap-off. There was 
no evidence of a bulk fluid between the surfaces. The shape 
of the meniscus is also affected by the chemical potential. 
For,«* = -11.7 the meniscus was not smoothly curved but 
rather contained stepwise discontinuities due to the 
layered fluid. For (i* = -11.4 the meniscus is diffuse but 
appears to be much less affected by fluid layering within 
the condensate. 

Increasing the chemical potential also increases the film 
thickness on the nanowire surfaces. For ft* = - 11.4 the 
nanowires are covered by three-layer films, as can be seen 
clearly for h* = 9.4 in Figure 5. The two layers adjacent 
to the surfaces are highly ordered while the third layer 
appears to be a diffuse cloud. In fact, on careful examina- 
tion of panel h for h* = 9.4, it is possible to see that the 
diffuse clouds are actually connected across the gap. The 
vapor-phase density between the wires is enhanced due 
to the presence of the wires. Further separation would be 
necessary to see a bulk vapor phase between the wires. 

Figure 6 provides a comparison of snap-off between the 
5-wire, 10-wire, and infinite slit models at JA*.= -11.7. 
Not surprisingly, the wires snap off before the planar 
system, and the 5-wire snaps off before the 10-wire. In 
panel a at h* = 5.5, a 5-layer condensate is present for all 
three systems. At h* = 6.4 the 5-wire condensate has just 
snapped off but a vapor more dense than the bulk remains 
between the surfaces. On further increasing the surface 
separation to h* = 7.00, the 10-wire condensate has just 
snapped, leaving a dense vapor between the surfaces. Note, 
however, that bulk vapor now separates the 5-wires. For 
h* = 7.5 the fluid phase in the infinite slit pore has 
evaporated, leaving a dense vapor phase. The systems 
with larger surface area maintain a liquid condensate for 
greater surface separation. 

In Figure 7 we compare condensation between nano- 
wires three unit cells wide with condensation between 
nanoplatelets that are three units cells in extent in both 
the x an'dy directions at/** = -11.7. As expected, as the 
surface separation increases, the condensate is stable at 
larger surface separations for the nanowire system 
compared to the platelets. In other words, the system with 
smaller surface area snaps off at a smaller surface 
separation. Additionally, at all surface separations the 
condensate in the nanoplatelet system is never as large 
or well ordered as that in the 3-wire system. The 3-wire 
prior to snap-off has four well-defined liquidic layers and 
begins to add the fifth layer, while the 3x3 system never 
has more than four well-defined layers. The film thickness 
on the external surfaces is different for the 3-wire and the 
nanoplatelet systems. The second film layer is noticeably 
more dense for the 3-wire case as compared to the platelet 
system. 

Discussion 

This work shows that capillary condensation, where a 
liquid condenses across a gap when the surfaces are close 
enough, is preceded by an accumulation of dense vapor in 
the gap. This is clear in Figure 6, where for h* — 6.4 the 
vapor separating the surfaces is more dense than the bulk 
vapor that fills the gap at h* = 7.5. In fact, the fluid density 
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in the gap increases continuously from bulk vapor to liquid 
density as the surfaces approach from a sufficiently large 
separation. Capillary evaporation occurs in reverse. The 
condensate gradually thins to a dense vapor as the surfaces 
are separated, until finally a bulk vapor separates the 
surfaces. As the chemical potential increases, the surface 
separation at which evaporation occurs increases. The 
snap-off separation also increases with the number of sides 
that have infinite dimensions in the nanocontact, which 
is discussed below. Since a new simulation was started 
for each surface separation, no hysteresis was observed; 
only thermodynamically stable states were simulated. 

On closer examination, it is clear that the liquid 
condensates are layered. This is consistent with the widely 
accepted idea based on both computer simulations29 and 
SFA experiments1 that fluids confined between surfaces 
sufficiently close together are layered. We show here that 
this also applies for fluids condensed in nanoscale contacts 
even though the lateral size of the contact in at least one 
direction is on the nanoscale. This is consistent with 
simulation results for fluid-filled pores where the confining 
surfaces are grooved, allowing the fluid to be distinctly 
layered in some regions and not in others.31'32 Transverse 
order is also apparent within the fluid layers closest to 
the surfaces due to epitaxial alignment with the surfaces. 
This is also a well-known phenomenon that has been 
studied via computer simulations for both structured29 

and perfectly smooth solid surfaces.29,33 Since the surfaces 
are immersed in bulk vapor, we can directly examine the 
meniscus as the condensate forms. The meniscus is not 
necessarily a smoothly varying surface that divides the 
liquid and vapor phases. Rather it is diffuse and actually 
appears to have steps that become more pronounced with 
smaller contacts and lower chemical potential. 

The number of fluid layers that can be supported 
between the nanocontacts depends on the chemical 
potential. At//* = -11.7 the 3-wire supports four layers 
whereas with an increase in chemical potential to //* = 
-11.4 the 3-wire supports up to eight fluid layers. A 
significant result of this work is that the size of the 
nanocontact surfaces also affects the number of fluid layers 
that can be supported. At,«* = -11.7 the 5-wire supports 
up to five fluid layers. At the same chemical potential the 
fifth layer is never fully developed for the 3-wire. A similar 
conclusion is drawn on examination of Figure 7 for the 
5-wire, 10-wire, and infinite parallel platelets. If the 
contact region is large enough, the number of layers 
supported and the condensation separation are indepen- 
dent of contact size. From this work it is clear that, in 
order for the nanocontact size to be unimportant, the 
lateral dimensions must be greater than 10a. 

This work also indicates the threshold where the size 
of the nanocontact affects application of macroscopic 
relationships such as the Kelvin equation. The Kelvin 
equation theoretically predicts the relationship between 
the maximum surface separation that will support a 
condensate and the bulk vapor pressure. Generally18 the 
shape and size of the contact region is not important in 
applying the Kelvin equation because the dimensions of 
the contact region are much larger than the smallest 
meniscus radius of curvature. The larger radius of 
curvature can be taken equal to infinity so that the 
meniscus curvature and hence the maximum surface 
separation only depend on the vapor pressure, temper- 

Öl) Curry, J. E.; Zhang, F.; Cushraan, J. H.; Schoen, M.; Diestler, 
D. J. J. Ckem. Phys. 1994, 101, 10824. 

(32) Gao, J-, Luedtke, W. D.; Landman, U. Science 1995,270, 605. 
(33) Jiang, S.; Rhykerd C. L.; Gubbins, K. E. Mol. Phys. 1993, 79, 

373. 
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ature, and surface tension. The size of the contact region large contacts. If, however, a dimension of the contact 
is not contained in the approximate Kelvin expression for region approaches the size of the meniscus, the Kelvin 
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equation is only sensible if the meniscus is axisymmetric. 
For the nanowires, which are not axisymmetric, if the 
surface tension is invariant with meniscus curvature 
(which it almost certainly is not),34 then the Kelvin 
equation predicts the same condensation separation 
irrespective of the width of the wire. These simulations 
show that the condensation separation decreases as the 
wire narrows. This is because the menisci are not 
independent. Even the condensation separation for the 
widest nanowire studied (10-wire) is less than the 
separation for the infinite platelets, indicating that the 
menisci are still interdependent. If the criterion of 
independent menisci is used to set a threshold for the 
applicability of the Kelvin equation in nanocontact 

(34) Tolman, R. C. J. Chem. Pkys. 1948, 17, 333. 

systems, then from this model the wires must be wider 
than 10a. 

For the nanoplatelets the limit of applicability of the 
Kelvin equation is not as easy to define. The nanoplatelets 
are axisymmetric, and geometrically the size of the contact 
region would not limit applying the Kelvin equation. The 
Kelvin equation predicts that the mean radius of curvature 
(1/ri + Ur2)'

1 is fixed by the vapor pressure, temperature, 
and surface tension, so that as one radius decreases, the 
other also decreases. So as the size of the contact decreases 
and the width of the meniscus shrinks, the evaporation 
distance also decreases. This is what is observed with 3 
x 3 and 5x5 contacts. The 5x5 contact maintains a 
meniscus at a greater surface separation than that for 
the 3 x 3 contact. While the trend is qualitatively sensible, 
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the molecular nature of the fluid must limit the ap- 
plicability of the Kelvin equation. Presumably in these 
studies we are well below this threshold; however, this 
can only be verified by directly calculating the surface 
tension, which was not attempted in this work. 

In addition to capillary condensation, we can also 
examine film thickness on isolated surfaces as a function 
of chemical potential. Ellipsometry has been used exten- 
sively to measure film thickness on isolated surfaces in 
the laboratory.35-36 Films are condensed from the vapor 
on all.exposed nanowire surfaces. When the surfaces are 
sufficiently far apart so that bulk vapor separates the 
surfaces, the film thicknesses in the contact region and 
on the external surfaces are the same. At/** = -11.7 (see 
Figure 4, h* = 5.9) two layers of fluid cover the nanowire 
surfaces. The first layer is dense and well ordered while 
the second layer is rather diffuse. As expected for a higher 
chemical potential (ji* = -11.4), the film thickness 
increases to three layers (see Figure 5, h* - 9.4). The van 
der Waals film-thickening model predicts that the thick- 
ness of a film on an isolated surface will be increased by 
the presence of another surface due to van der Waals 
interactions across the gap separating the surfaces.11 

Christenson31 observed van der Waals thickening for thick 
(~10 nm) teri-butyl alcohol films adsorbed on mica with 
a surface forces apparatus. We notice that the density of 
the outermost film layer is enhanced even after snap off 
as long as the vapor density in the gap is higher than the 
bulk vapor density. It is illustrated clearly in Figure 6, 
where for the 5-wire case the density of the second layer 
is higher for h* = 6.4, where the surfaces are separated 
by a dense vapor, compared to h* = 7.5, where bulk vapor 
separates the surfaces. 

The van der Waals film-thickening model also predicts 
that the relationship between the surface separation and 
the film thickness at the capillary condensation transition 
is approximately hc = 3tc, where hc and tc are the critical 
surface separation and the film thickness, respectively.11 

To test this, we take the capillary condensation separation 
to be the separation where bulk vapor remains just after 
the condensate evaporates. Assuming the Lennard-Jones 

(35) Rhykerd, C. L.; Cushman, J. H.; Low, P. F. Langmuir 1991, 7, 
2219 

(36) Beaglehole, D.; ChriBtenson, H. K. J. Phys. Chem. 1992, 96, 
3395 

(37) Christenson, H. K. Phys. Rev. Lett. 1994, 73, 1821. 
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diameter defines the surface edge, we measure hcash- 
o, since h is defined as the distance between the centers 
of surface atoms on opposing surfaces. The film thickness 
is estimated from the density profile as the distance from 
the surface to the edge of the green region denoting the 
extent of the outer film layer. We find in all cases that hjtc 
~ 3, in agreement with the van der Waals film-thickening 
model. Specifically, for the 3-wire, fi* = -11.7, h* =. 5.9 
(Figure 4), hjte = 3.1, for the 3-wire,/** = -11.4, h* = 9.4 
(Figure 5), hjtc = 3.4, and for the 5-wire, ft* = -11.7, h* 
= 6.4 (Figure 6), hjtc = 3.4. 

Conclusions 

We have directly studied capillary condensation in 
nanoscale contacts via isostrain grand canonical Monte 
Carlo computer simulations. We have purposely examined 
contacts with dimensions on the molecular scale to 
determine the effect of contact area size on capillary 
condensation and the reverse process, snap-off. The 
condensates are layered, and in-plane order is apparent 
particularly in the layers nearest the surfaces. The film 
thickness on isolated surfaces increases with increasing 
chemical potential, as expected. As the surfaces approach 
in bulk vapor, the critical surface separation where 
condensation occurs is approximately three times the 
critical film thickness, in agreement with the van der 
Waals film-thickening model. The meniscus is smooth for 
high enough chemical potential, but for low chemical 
potential and small contact size the meniscus is not 
smoothly rounded but contains steps. A qualitative 
analysis in terms of the Kelvin equation shows that the 
Kelvin equation could be applied for condensation of simple 
fluids between nanoplatelets but not for nanowires. 

Even in this system where the intermolecular potentials 
are relatively simple, the fluid behavior is complex. More 
complex intermolecular potentials necessary to simulate 
metallic surfaces and aqueous solutions almost certainly 
will bring to light further complexity. These will be the 
subjects of future work. 
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Abstract. A three-spatial scale, single time-scale model for both moisture and heat transport is 
developed for an unsaturated swelling porous media from first principles within a mixture theoretic 
framework. On the smallest (micro) scale, the system consists of macromolecules (clay particles, 
polymers, etc.) and a solvating liquid (vicinal fluid), each of which are viewed as individual phases 
or nonoverlapping continua occupying distinct regions of space and satisfying the classical field 
equations. These equations are homogenized forming overlaying continua on the intermediate (meso) 
scale via hybrid mixture theory (HMT). On the mesoscale the homogenized swelling particles con- 
sisting of the homogenized vicinal fluid and colloid are then mixed with two bulk phase fluids: the 
bulk solvent and its vapor. At this scale, there exists three nonoverlapping continua occupying distinct 
regions of space. On the largest (macro) scale the saturated homogenized particles, bulk liquid and 
vapor solvent, are again homogenized forming four overlaying continua: doubly homogenized vicinal 
fluid, doubly homogenized macromolecules, and singly homogenized bulk liquid and vapor phases. 
Two constitutive theories are developed, one at the mesoscale and the other at the macroscale. Both 
are developed via the Coleman and Noll method of exploiting the entropy inequality coupled with 
linearization about equilibrium. The macroscale constitutive theory does not rely upon the mesoscale 
theory as is common in other upscaling methods. The energy equation on either the mesoscale or 
macroscale generalizes de Vries classical theory of heat and moisture transport. The momentum 
balance allows for flow of fluid via volume fraction gradients, pressure gradients, external force 
fields, and temperature gradients. 

Key words: swelling, heat transfer, polymer, clay, liquid/vapor transfer, drying, unsaturated, mixture. 

1.  Introduction 

As technology becomes more sophisticated, it is becoming increasingly necessary 
to model porous materials over a hierarchy of scales. Consider, for example, nat- 
ural smectitic clays. The macroscopic properties of clay are primarily due to clay 
particles, which are clusters of clay mineral platelets (a solid phase) and adsorbed 
water (or vicinal water). The vicinal water is adsorbed to the clay minerals via 
electro-chemical forces, and the proximity of the vicinal fluid to the solid may 
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Figure 1. Three scales of an idealized smectitic clay. 

strongly affect the thermodynamic properties of the adsorbed fluid [30, 42, 43]. 
In naturally occurring clay soils, the clay is composed of clay particles with voids 
which may be filled with a bulk phase liquid (water) and/or air. Thus the clay 
particles swell or shrink as water transfers between the bulk and vicinal phase. 
This particular porous medium is an example in which there are three distinct 
scales of observation - a microscale, in which clay minerals and adsorbed wa- 
ter are distinguishable; a mesoscale, in which the homogenized particles and bulk 
phase fluid are distinguishable; and a macroscale, in which the medium appears to 
be homogeneous (see Figure 1) with saturated particles, but possibly unsaturated 
large-scale pores. 

A protypical model governing heat and moisture transfer through porous media 
postulated by de Vries [23] is given by 

cd-f-p'w- 
dt 

•a_£_ 
dt 

V • (KVT) - Le\ - (c^eV
g + cl

pPW)VT, (1) 

where T is the temperature, p1 and p% are the densities of the liquid and gas phases 
respectively, v1 and vg are the velocities of the liquid and gas phases respectively, K 
is the thermal conductivity of the porous media, L is the heat of vaporization, C is 
the volumetric heat capacity, e1 is the volumetric liquid content, W is the differen- 
tial heat of wetting, ef is the rate of evaporation, and c\ and cx

p are the specific heat 
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of water vapor and liquid, respectively. This model is widely recognized as being 
practically useful for a wide range of porous media. However, it has limitations, es- 
pecially under conditions in which the temperature fluctuates (for correction factor, 
see e.g. [32]). This model was posited and subsequent models have been built upon 
this model. The goal of this paper is to derive governing heat and moisture transfer 
equations, which are based on knowledge of the microstructure. 

There are several methods which can be used to upscale information from the 
microscale, including homogenization [12], and averaging [53]. These methods 
take all information from the microscale and propagate up, either by asymptotic 
expansion or averaging, the microscale equations to the larger scale. The advantage 
of these approaches is that macroscopic coefficients are defined precisely in terms 
of microscopic thermodynamic properties and the geometry. The disadvantage of 
such approaches are that microscopic physics must be precisely known. In a ma- 
terial, such as swelling porous media, the interactions between the phases are not 
well-understood, and so we choose an alternate upscaling approach, hybrid mixture 
theory (HMT). 

Hybrid mixture theory is a slight modification of classical mixture theory. In 
the two-scale approach, HMT involves volume averaging field equations (conser- 
vation of mass, momentum balance, energy balance, entropy inequality) from the 
microscale to the mesoscale. This yields explicit relations between the mesoscopic 
field variables and their microscopic counterparts. Restrictions on the constitutive 
equations are obtained within the framework of rational thermodynamics, i.e. the 
entropy inequality is exploited in the sense of Coleman and Noll [17]. These ideas 
were first introduced by Hassanizadeh and Gray [35-37] in 1979 for a multi- 
phase nonswelling porous medium. They have since been expanded to include 
multi-constituents [33, 34] and multi-constituent with interfaces for swelling por- 
ous media [2]. This work has generated many new insights into the macroscopic 
behavior of porous media, including nonequilibrium swelling and capillary pres- 
sures [1, 39], Darcy and non-Darcy type flow with and without interfacial effects, 
[9,27, 28, 38,40], the macroscale chemical potential [10,21], and the macroscopic 
stress tensors for swelling porous media [11,45,46]. A three-scale model for swell- 
ing porous media by Bennethum and Cushman [7, 8] incorporates multiple phases, 
multiple species, and interfacial effects. The three scales include a microscale, 
mesoscale, and macroscale. In this setting HMT was employed by averaging the 
field equations twice: once going from the microscale to the mesoscale, and then 
again from the mesoscale to the macroscale. The entropy inequality is exploited to 
obtain constitutive restrictions only in terms of macroscopic variables. 

The resulting model is a parallel flow type model, as opposed to a dual porosity 
or distributed microstructure model. Parallel flow type models, [49], are models 
which view the vicinal and bulk water velocities as super-imposed, with no dis- 
tinction between the time-scales for the vicinal water and bulk water. For modeling 
consolidation problems, the time scales involved may become critical. However, 
for heat transfer problems with unsaturated drainage, we feel the distinction in 
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time scales is not as important, although this theory can be extended to incorporate 
such cases. Incorporating different time scales results in constitutive equations with 
nonlocal behavior, i.e. the resulting constitutive equations involve integrals in time. 

This work is extremely general, and a wealth of information has yet to be ex- 
ploited from it. For a summary of these works see Cushman [21]. We concentrate 
the discussion on moisture transport and heat transfer in combination with solid 
stresses which result from these processes. 

2. Two-Scale Model 

In this section we discuss the development of the two-scale model. Here we assume 
that the particle is composed of two phases, a liquid phase, /, and a solid phase, s. At 
the microscale, see Figure 1, one can distinguish between the solid and vicinal (ad- 
sorbed liquid) phases, while at the mesoscale the particle appears to be continuous. 
It is assumed that the thermodynamic properties of the liquid phase are strongly 
affected by its proximity to the solid phase, interfacial properties are negligible, 
the solid and fluid are nonpolar so that conservation of angular momentum for 
each phase implies the stress tensors of each phase are symmetric, and that each 
phase behaves as a single constituent, i.e. there are no chemical reactions within a 
phase. We do allow for transfer between phases. A summary of the definitions of 
all variables is provided in Appendix A. 

2.1.   MESOSCALE FIELD EQUATIONS AND ASSUMPTIONS 

Within the framework of HMT, the microscale field equations are averaged with re- 
spect to some volumetric weight function [3]. If there is a distinct scale separation, 
then this weight function is commonly taken as a characteristic function consistent 
with an REV in the sense of Bear [5]. However, from a purely formal perspective, 
an REV need not exist, nor need there be scale separation. The averaged equations 
with respect to a general weight function will take the same form as those with 
an REV [18]. Care must be taken, however, when there is no scale separation, 
as constitutive theories in this case will in general be nonlocal (cf. [19, 22]) and 
the entropy inequality must be considered as a functional inequality in the sense 
of Frechet derivatives [31]. This latter point has not been well understood, as in 
the hydrology literature wherein localized constitutive equations have often been 
assumed (as in [4]), irregards to whether there is scale separation. Throughout this 
article we will assume scale separation between the micro, meso and macro scales. 
And thus, constitutive relations will be constrained using the Coleman and Noll 
method of exploiting the entropy inequality, which is considered as a nonfunctional 
equation. The averaging of the microscale field equations to the mesoscale, along 
with the relationships between the mesoscopic variables are presented in several 
papers [6, 36]. 
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Conservation of mass for the a-phase is 

P^ J +eapaV-V*=ea
ß,    a,j8=l,s,  a * ß, (2) 

where ea is the volume fraction of phase a, pa and v" denote the averaged density 
and mass-averaged velocity of the a;-phase, respectively, eß represents the net mass 
gained by the a-phase from the other phase per unit time, and Da/Dt denotes the 
material time derivative following the a-phase, i.e. Da/Dt — d/dt + v" • V. 

Conservation of momentum for each phase is 

sapa^£-V-{eat*)-eapag = %    a,j8 = l,s,   a^ß, (3) 

where t" denotes the average symmetric stress tensors for phase a, g is the body 
force (i.e. gravity), and T* denotes the net gain of momentum of the a-phase due 
to mechanical interactions with the other phase. 

Conservation of energy for phase a is given by 

ettP*^p- - eata : da - V • (eaqa) + eapaha = Qa
ß, 

a,ß = \,*t   a^ß, (4) 

where Ea is the average internal energy per unit mass of the a-phase, q" denotes 
the heat flux, d" is the symmetric part of Vv", A : B = tr(ABT) denotes the 
classical inner product between tensors, ha is the external heat source per unit 
mass per unit time, and ßjs denotes the gain of energy by the a-phase due to 
non-mechanical interactions with the other phase. If we sum over all phases, one 
recovers the familiar form of the energy equation 

DE 
p— -t:Vv-V-q-pA = 0, (5) 

where the relationships between the medium and phase thermodynamic variables 
are 

P = Y.£apa< <6) 

ot=l,s 

pv=^eVav«, (7) 
a=l,s 

ua = va - v, (8) 

t=  £(£ata-£apaUa|la), (9) 
a=l,s 

pE = J2 (sapaEa + eapaua • ua), (10) 
a=l,s 
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*1 = J2 t6"^ +1" • u" - paua(Ea + ±u" • uff)], (11) 
CK=1,S 

ph=J2 £apaha. (12) 
a=l,s 

Note that relative velocities, ua, of the liquid phase over the mass averaged bulk 
velocity contribute to the net heat flux. 

Further, we have restrictions which arise from the fact that the thermodynamic 
properties of the interface are negligible. This results in the following relations: 

3 + 3 = 0, (13) 

J^(Ta
ß + ea

ß\
a) = 0,    0 = l,s^a, (14) 

a=l,s 

£ [Qa
ß + f £ • v« + ea

ß(E
a + \ya ■ v*)] =0,    ß = 1, s £ a. (15) 

<x=l,s 

The first equation states that the ls-interface is massless, and the second and third 
equations state that no momentum nor energy are lost through the interface. By 
design, we also have el + £s = 1. 

After upscaling, the system is now viewed as two co-existing continua, so that 
at each point in space there exist thermodynamic properties for both the liquid 
and solid phase. At this point we perform a change of variables using a Legendre 
transformation to eliminate the energy density, E" in favor of the Helmholtz free 
energy, A", 

A« = Ea - Tria. (16) 

The unknowns in our system are thus: 

s\ PW, T (17) 

Aa,r,a,ta,T[,elqa,Ql
s,     a = 1, s. (18) 

To arrive at a system which has the same number of equations as unknowns, we 
consider the second row of variables (18) to be dependent, or constitutive. These 
variables are assumed to be functions of a set of independent variables which we 
henceforth denote constitutive independent variables. However, even with these 
constitutive variables a careful count indicates that there is still an additional un- 
known for which there is no corresponding equation. Making a comparison with 
classical mixture theory for a single phase, we see that the volume fraction is the 
variable unaccounted for. Thus, there is a problem of closure associated with the 
loss of information in the upscaling process. To close the system, we follow Bowen 
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[13] and postulate a constitutive relation for the material time derivative of the 
volume fraction. 

We assume the macroscopic fluid is viscous and the fluid and solid phases are 
compressible. Further, we assume that the temperature of the solid and fluid phases 
are the same at each point in space, so that the rate at which heat transfers between 
phases is much faster than the time scale of the problem. 

By the Principle of Equipresence (Truesdell and Toupin [52]), we assume that 
every constitutive variable is a function of all the following macroscopic con- 
stitutive independent variables: 

e ', T, pa, Es, v1'5, d1, Ve1, V7\ Vp«, VES,     a = 1, s, (19) 

where Es and d1 are the macroscopic strain tensor of the solid phase and rate of 
deformation tensor, respectively, defined by 

Es = i[(Fs)rFs - I],        d' = i[Vv> + (Vv')r], (20) 

in which Fs = grad Xs denotes the deformation gradient (with grad denoting the 
differentiation with respect to a macroscopic material particle). Here we have im- 
plicitly assumed that the constitutive variables are local functions, i.e. the value of 
each constitutive variable is determined by the values of the constitutive independ- 
ent variables at the same material point, so that there is no non-locality in space. 
With this assumption, the variables and their gradients (19) can be considered inde- 
pendent, since it is possible to have different processes which at a single point can 
have, for example, the same temperature but varying gradients of the temperature. 

The macroscopic strain is a measure of the solid phase geometry, so that by 
including Es and VES in the list of constitutive independent variables we are assum- 
ing the behavior of the system is partially dictated by the separation and distortion 
of the solid phase and their spatial variations. It should be noted however, that Es, 
£i, and ps are closely coupled through the continuity equation, and specifically that 
they are not independent if there is no exchange of mass between phases. If there 
is no exchange of mass, then it is necessary to include only two of these variables, 
and further, if the solid phase is considered incompressible, then it is necessary to 
choose one of Es and e1 as an independent constitutive variable. 

To simplify the quantity of algebra which follows, we deviate slightly from the 
axiom of equipresence [25], and assume the Helmholtz free energy densities of the 
phases depend only on a subset of the set of constitutive independent variables. If it 
is assumed that the Helmholtz free energies are a function of all constitutive inde- 
pendent variables listed in (19), then exploitation of the entropy inequality requires 
that both energies are not a function of v1,s, V7\ and VES. Here we additionally 
assume that the liquid free energy is not a function of ps and likewise that the solid 
free energy is not a function of p1. Incorporating these additional dependencies still 
produces the results presented herein if one slightly modifies the thermodynamic 
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definitions of the pressure and chemical potential (see [6, 8] for details). For the 
system under consideration, it is thus postulated that 

As = A*(e\ T, ps, ES
),        A1 = A\s\ T, p\ Es). (21) 

By assuming the liquid phase energy is a function of the volume fraction, we 
are allowing the adsorbed liquid structure to be a function of the separation of the 
solid phase minerals. Recall that the definition of vicinal or adsorbed water is water 
whose properties vary with the distance from the solid phase. In an ideal case, 
in which the solid phase is composed of flat parallel platelets, the adsorption of 
additional water causes the platelets to move further apart, changing the properties 
(density, viscosity, etc. [43]) of the vicinal fluid. Thus incorporating the volume 
fraction as an independent variable of A1 allows for this property - the further 
apart the solid platelets, the larger the volume fraction of the liquid phase. This 
allows us to model particles at medium to high moisture content. At low moisture 
content (five or fewer layers of water between solid platelets), the liquid phase 
can also be affected by relative shearing of the solid phase [20, 41, 48]. This is 
represented in the model by assuming the liquid phase energy is a function of 
the solid strain tensor which, by definition, is the strain of the 'smeared out' solid 
phase. So as the platelets separate, the solid phase strain tensor is altered. Similarly, 
if the platelets are sheared relative to each other, this again affects the strain tensor. 
Using assumption (21) gives us a framework to derive a constitutive relation for 
swelling pressure previously obtained only empirically by Low [43] for the first 
time [2]. 

To complete the set of definitions, we introduce the thermodynamic pressures 
(/?"), the classical effective stress tensor (t|) in the sense of Terzaghi [51], and the 
hydration stress tensor (t[) [8, 46]. Within the current framework they are defined 
as follows: 

p" = (pa)2^-, (22) y      y    dpa 

t: = PsFs|^(Fs)r,        t[ = P]F — mT, (23) 

The definition of t* is analogous to the Cauchy stress tensor for an elastic medium 
(see Eringen [25]) although applied to a porous skeleton. In soil mechanics this 
stress tensor is referred to as the Terzaghi stress tensor. The hydration stress tensor, 
t\ is a result of the physico-chemical forces between the fluid and solid phases (see 
[46] for further discussion). If one of the phases is incompressible, then there is no 
thermodynamic definition for pressure, but a corresponding term is still obtained by 
treating the continuity equation as a restriction enforced weakly using a Lagrange 
multiplier. In this case, the pressure becomes an unknown in the problem (see [6, 
8, 21]). 

The entropy inequality can be formulated in the usual manner [2, 6, 37], and in 
the sense of Coleman and Noll [17] the entropy inequality is exploited to obtain 
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restrictions on the forms of constitutive equations. We present the results in the 
next section. 

2.2.   CONSTITUTIVE RESTRICTIONS 

In this section, we present relations resulting from the exploitation of the entropy 
inequality which are pertinent to the formulation of the flow and heat transfer 
within the two-scale model. We present two sets of results which represent a small 
portion of the results derived in [2, 6] in much greater detail. The first set consists 
of results which hold at equilibrium and far from equilibrium, and come from the 
assumption that DST/Dt and ds are not constitutive independent variables: 

«V (£+')♦"(£+')-* 
ests = „gSpSj + gsts + g.tl 

(24) 

(25) 

Equation (24) is a generalization of the classical result stating that temperature and 
entropy are dual variables. Equation (25) is a constitutive relation for ts and indic- 
ates that the solid stress is composed of a thermodynamic pressure, the effective 
stress tensor, which is a measure of solid-solid interaction, and the hydration stress 
tensor which incorporates the effects of the fluid-solid interactions. 

The second set of results hold near equilibrium and come from quadratic terms 
in the entropy inequality so that the entropy generated is always nonnegative. The 
fact that this comes from a linearization process means that terms of cubic and 
higher order have been neglected; thus these result«; lv : -niy near equilibrium. 
They include 

i..i tl = -pll + pV:Al, 

P]-Ps = *V 9e' + eV 
dA* 

a? 
voDS£ Sol 

+ p' Dt 

(26) 

(27) 

M  — = K1 

Mw^y 
ldAi 

* de1 f[ + p'Ve1 - eV^-Vfi' - *V^: : (VES) 
,3 A1 

3ES 

(28) 

l,s   _   iH vi,s   _   K 
dAl 

- e'Vp1 + e'p'g - e'P1 g^-Ve1 - 

^^-^Wjvr; (29) 
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Gs - G1 = C'e" (30) 

e}q* + e*qs = K-VT. (31) 

The coefficients v1, ft, K1, C\ and K are constants which arise from the lineariza- 
tion procedure and may be a function of temperature, densities, volume fraction or 
solid strain [2, 8]. Ga of Equation (30) is the Gibbs free energy for phase a and is 
given by Ga = pa/pa + Aa. Equation (26) is the constitutive restriction on t1 and 
when used to eliminate t1 in the momentum equation, the Navier-Stokes equation 
results. At equilibrium d1 is zero and we get that the stress tensor in the liquid phase 
is the hydrostatic pressure. 

Equation (27) gives an expression for nonequilibrium interfacial pressure jump, 
and implies that the pressure difference between the liquid and solid phase is 
a function of the dynamic rate of change of the volume fraction (see [1] for a 
discussion on this topic and its relation to nonequilibrium interfacial pressure). 

Equation (29) is a generalized Darcy-type law and arises when the constitutive 
equation for T]., (28), and the momentum Equation, (3), are used to eliminate T^. 
Recall that Tj. represents the exchange of momentum between phases. Thus Equa- 
tion (29) is the conservation of momentum with linearized constitutive equations 
for Tj. and t1 inserted. In this expression, the inertial effects are neglected and the 
hydrostatic form of the stress tensor is used (see [2, 6] for details). The first two 
terms on the right-hand-side give what is typically known as Darcy's law, i.e., the 
flow of fluid is directly proportional to the gradient of pressure plus a gravitational 
effect. In a swelling porous medium in which the free energy of the vicinal phase 
may be a function of the volume fraction, the third term on the RHS indicates 
that flow will occur from regions of high volume fraction (high moisture content) 
to regions of low volume fraction. In a nonswelling medium this term would be 
negligible, as the energy of the fluid would not be affected by its proximity to the 
solid phase. Further, flow will also occur in the presence of a temperature gradient. 
The coefficient of this last term is zero when interfacial effects are negligible, 
as argued by Hassanizadeh and Gray [37]. However, in clays where the specific 
surface is large, in general we do not have dA\/dT = — r}\. 

Equation (30) states that the rate of transfer from the solid to liquid phase is 
directly proportional to the difference of the Gibbs free energies. If the liquid 
and solid were composed of identical materials (water and ice for example) this 
statement says that at equilibrium the chemical potential of two phases must be 
equal. 

Finally, Equation (31) states that the partial heat flux of the system is propor- 
tional to the temperature gradient, causing a coupling between this generalized 
Fourier's law of heat conduction and the generalized Darcy's law (29). A fur- 
ther coupling is obtained when the definition of the net heat flux, (11), is used, 
since this relation also involves the stress tensors. Hence, heat flux, fluid flow, and 
deformation are all coupled within this system of equations. 
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We end this section by listing the unknowns along with the equations neces- 
sary to describe the swelling and heat transfer of a swelling porous media. The 
unknowns in our final system of equations are 

p\ p\ v\ Us, T, e\ (32) 

t\ ts, e\, % q, A\ A\ rj\ rj\ (33) 

where Us is the displacement of the solid phase. The equations include (roughly 
corresponding to the above unknowns): The conservation of mass (2), generalized 
Darcy's law for the fluid phase (29), conservation of momentum for the solid phase 
(3), the energy equation (5), nonequilibrium capillary pressure (or constitutive 
equation for Dsel/Dt) (27), constitutive equations for the stress tensors (26, 25), 
constitutive equations for the exchange of mass and momentum terms [28, 30], 
and the constitutive equation for the partial heat flux (31) combined with (11). The 
remaining four variables (Helmholtz energies and entropies) require constitutive 
equations for which no restrictions on their forms have been obtained. They may 
be a function of all variables listed in (19). 

The energy equation (5), is not in a practical form and so we make use of 
the constitutive relations in order to rewrite it. We begin with Equations (4) and 
eliminate the internal energy in favor of the Helmholtz potential. Making use of 
constitutive assumptions (21) and (31), using the chain rule, and summing over the 
two equations, we obtain 

Yxt + y2e
x + y3 • vu + T4 : Es + T5 : d1 + y6e\ + 

+ V • (KVD + espshs + e]pxhx = 0, (34) 

where yl5 y2, /6 are scalar functions, yj, is a vector valued function, and T4 and 
T5 are second order tensor valued functions. Using Es = (Fs)r • ds • Fs, it can be 
shown that these coefficients are related to the Helmholtz potential, A01, by 

Y\  = T 
2 Al ■ s  sd

2As       , ,8M 

r  9*A rw 

y2 = p - p -e p — -e p 
de1 ds1 

n,   9    /    1 S 1    19A' S    S9A&\ 

-T3f{p-p-e^-SpJj) (36) 
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2AI 

Y3   = 
9M 
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V + sV r-^vr + 

+ T 
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-\ dTl 

3ES 

.J^v£'-p
1V£

1 + £V^:(EsV) £P *_, 

3 -r— 3r 
K-'-v'-'+Tl + eV (38) 

T4 = -esps~ - e'p1^ + e*(FTl ■ ts • (Fs)-r + e'pW' • (Fsrr + 
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9 / s  s9^s 
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3ES 

3ES 

,3_A^ 
3E1 

VT) 

+ eV^r-£WT1-(Fs)-7 

r5 = fi'p'l + £'t' - £T^I = eV v1 : d1 - eT^I, 

Y6~ p*      p> 3TVP
S
      W' 

(39) 

(40) 

(41) 

where pA = e'p'A1 + e*psA\ Is = (Fsyhs(Fs)-T is analogous to the Piola- 
Kirchhoff stress tensor of the second kind, and the molar heat capacities, (see [14], 
pp. 84, 186), 

«i = r 
(»■ 

CP-      TdT2> 

pcp = elplcl + espscs
f 

(42) 

(43) 

may be a function of the volume fraction e1. The second form of equations (36)- 
(40) was obtained by incorporating constitutive relations (25)-(28). 

Term by term: The term associated with y>2 is related to the differential swelling 
of the two phases; y3 is associated with convective heat transfer; T4 is related to the 
thermally induced stress change of the solid phase; r5, up to first order, is related to 
the thermally induced pressure change of the liquid phase; y6 is related to transfer 
of latent heat by solidification/liquidification; and K is related to heat conduction; 
see for example, de Vries, [23]. 
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Let us now make some simplifying assumptions. Assume that the material time 
rate of change of the volume fraction is small, so that y2e

l is on the order of (e1)2 

and can be neglected. Similarly, since inertial terms of the momentum equation 
were neglected in deriving (29), all terms of order v'-s • v1,s and d1 : d1 can also be 
consistently neglected. Further, assume there is no exchange of mass between the 
liquid and solid phases. If there is no external source of body heat (hl = hs = 0), 
then the heat equation is of a more familiar form: 

:pt + [*V(|£ + „' - cJJVr +f I - 7^] ■ *"■' + 

+ T— :Es-slT—V-v'+V-(KVr) = 0, (44) 
dT dT 

where the exchange of momentum term T\ can be eliminated using Equation (28). 

3.  Three-Scale Model 

In this section we consider three-scales, denoted by micro, meso, and macro. As in 
the two-scale model, the field equations are upscaled via averaging to obtain field 
equations of Section 2.1. Figure 2 illustrates the setting where we may have some 
portion of a swelling colloid particle (denoted by \A and sA) and two other phases. 
The colloid particle may swell and shrink due to transfer from the vicinal to bulk 
phase, but it remains saturated. 

The averaging of the field equations along with the relationships between the 
microscopic and macroscopic variables are presented in other papers [6, 7] so here 
we only present the resulting equations. 

Figure 2. A colloidal phase which may swell (denoted by \A and sA) and two other phases, 
B and C. 
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3.1. MACROSCALE HELD EQUATIONS AND ASSUMPTIONS 

In this section, we discuss the development of the three-scale model. We assume 
the particle is composed of two phases, a liquid phase 1A, and a solid phase sA, but 
now there may be interactions with two other phases. It is assumed that there are 
three distinct scales. At the microscale, (see Figure 1) one can distinguish between 
the solid and adsorbed liquid phase, at the mesoscale the particle can be distin- 
guished from the other bulk phases, and at the macroscale, the medium appears to 
be continuous. It is assumed that interfacial properties are negligible, and that each 
phase behaves as a single constituent, i.e. there are no chemical reactions within a 
phase. We do allow for mass transfer between phases. 

3.2. MACROSCALE FIELD EQUATIONS AND ASSUMPTIONS 

In this model the field equations are upscaled twice. Averaging of the equations 
along with the relationships between the macroscopic and microscopic variables 
are presented in several papers [6, 7], so here again, we only present the resulting 
equations. 

There are now four phases: 1A, sA, B, and C. For each phase, the conservation 
of mass is 

D*(g*^*> + eKpKv . v* = £ «J,     K,M = \A, sA, B, C, (45) 

where eu = ssA = sA is the local volume fraction of the colloidal phase, sB and ec 

are the volume fractions of phases B and C, pK is the mass density of the K-phase 
on the macroscale so that sK pK is the total mass of the AT-phase per unit volume. 
Further, v* is the mass-averaged macroscale velocity of phase K, e£ represents 
the net mass gained by the K-phase from the M phase, and DK/Dt denotes the 
material time derivative following the K -phase. 

Conservation of momentum for the K-phase (K = 1A, sA, B, C) is 

fi V5^ - V • (£*t*) - sApKg = T f I (46) 

where t* denotes the average symmetric stress tensors for phase K, g is the body 
force (i.e. gravity), and Tf denotes the net gain of momentum of the K-phase due 
to mechanical interactions with phase L. 

Conservation of energy for phase K is given by 

sKpK&^_ _ £KtK . VvK _ v . {eK   K) _ £KpKhK = £ §K (47) 

where EK is the average internal energy density per unit mass of the K-phase, q* 
denotes the heat flux, and Qf denotes the gain of energy by the K-phase due to 
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nonmechanical interactions with phase L. If we sum over all phases, one recovers 
the familiar form of the energy equation 

pH_t:Vv-V.q-pA = 0, (48) 

where the relationships between the medium and phase thermodynamic variables 
are 

P = X>V, (49) 
K 

pv = £>*PV\ (50) 
K 

u*=v*-v, (51) 

t = J^(eKtK-eKpKnKuK), (52) 
K 

pE = £> V£* + eKpKu* ■ nK), (53) 
K 

q = £> V +1* • u* - pKuK(EK + iu* • u*)], (54) 
K 

ph = Yl£KpKhK> (55) 

K 

where all sums are over K - \A,sA,B,C. Note that relative velocities of one 
phase over the mass averaged medium velocity contribute to a macroscopic heat 
flux. 

Further, we have restrictions which arise from the fact that the thermodynamic 
properties of the interface are negligible. This results in the following relations: 

eK
M + e» = 0, (56) 

<?£ + #vif) + <W + #v*) = 0, (57) 

[QM +T^V^+ eK
M{E

K + \vK ■ v*)] + 

+ [QK + T£ • vM + e%(EM + \yM ■ vM)] = 0, (58) 

where K,M — L4, sA, B, C and K ^ M. The first equation states that the inter- 
faces are massless, and the second and third equations state that no momentum nor 
energy are lost through the interfaces. Further, we have the relation that 

eA+eB + ec = l. (59) 
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After upscaling, the system is viewed as four co-existing continua, so that at each 
point in space there exists thermodynamic properties for all phases. At this point 
we perform a change of variables using a Legendre transformation to eliminate the 
energy density, EK, in favor of the Helmholtz free energy, AK, 

AK = EK-Tr]
K. (60) 

The unknowns in our system are 

E\ eB, pK, vK, T, (61) 

AK, t]K, tK, eK
M, %, q*, QK

M, 
K=\A,sA,B,C,     M = \A,sA,B,C £K, (62) 

subject to restrictions (56)-(59). 
To arrive at a system which has the same number of equations as unknowns, we 

consider the second row of variables (62) to be dependent, or constitutive. These 
variables are assumed to be functions of a set of constitutive independent variables. 
As in the two-scale case, a careful count indicates that there are two additional 
unknowns for which there is no corresponding equation, namely eA and sB. To 
close the system, we postulate a constitutive relation for the material time derivative 
of the volume fractions. 

We assume the macroscopic vicinal fluid, \A, and two bulk phase fluids, B and 
C, are viscous and the fluid and solid phases are compressible. As before, we still 
assume that the temperature of all phases are the same at each point in space. 

By the Principle of Equipresence (Truesdell and Toupin [52]), we assume that 
every constitutive variable is a function of all the following macroscopic con- 
stitutive independent variables: 

s\ eB, T, pK, EsA, v*-sA, (63) 

VsA, Vefi, V7\ VpK, VEsA, dK,     K = IA, sA, B, C, (64) 

where EsA and d* are the macroscopic strain tensor of the solid phase and rate of 
deformation tensor of phase K, respectively, defined by 

EsA = i[(FsA)rFsA-I], (65) 

d* = i[Vv* + (Vv*)7], (66) 

in which FsA = grad xsA denotes the deformation gradient (with grad denoting the 
differentiation with respect to a macroscopic material particle). As in the two-scale 
case we assume the constitutive variables are local functions. With this assumption, 
the variables and their gradients (63, 64) can be considered independent. 

The macroscopic strain is a measure of the solid phase geometry, so that by 
including EsA and VEsA in the list of constitutive independent variables we are still 



COUPLED SOLVENT AND HEAT TRANSPORT 227 

assuming the behavior of the system is partially dictated by the separation, distor- 
tion, and entanglement of the solid platelets and their spatial variations. Contrary 
to the two-scale case, eA and EsA are not closely coupled in general due to the 
potentially large amount of fluid which could be transferred between the vicinal, 
I A, and bulk phase, B. 

To simplify the quantity of algebra which follows, we deviate slightly from the 
axiom of equipresence [52], and assume the Helmholtz free energy densities of the 
phases depend only on a subset of the set of constitutive independent variables. 
It can be shown that if it is assumed the Helmholtz free energies are a function 
of all constitutive independent variables listed in (63), that the exploitation of the 
entropy inequality requires that all energies are not a function of \K<sA, V7\ and 
VEsA. Here we additionally assume that the free energies are not a function of 
densities of other phases. Incorporating these additional dependencies still produce 
the results presented herein if one slightly modifies the thermodynamic definitions 
of the pressure and chemical potential (see [6, 8] for details). For the system under 
consideration it is thus postulated that 

Au = AlA(eA,eB,T,plA,EsA), (67) 

AsA = AsA(sA, eB, T, psA, EsA), (68) 

AK =AK(eA,eB,T,pK). (69) 

In this simplification, we are still allowing the free energy of the vicinal water to 
be a function of its proximity to the solid phase by assuming its dependence on the 
solid phase strain tensor and the volume fraction of the particles. However, the bulk 
phase fluids (B and C) are, by definition, not affected by the proximity to the solid 
phase, so that their dependence on the solid phase strain tensor is not included. The 
inclusion of the volume fractions as independent variables in (69) provides a weak 
dependence of the free energies on the interfaces, because of the volume fractions' 
ability to capture some geometric effects. However, to obtain the full effects of 
interfaces, interfacial balance laws must be introduced, and additional constitutive 
independent variables such as interfacial area density must be incorporated [2, 6- 
8]. 

To complete the set of definitions, we introduce macroscale thermodynamic 
pressures (pK), the macroscale effective stress tensor (t*A), and the macroscale 
hydration stress tensor (t\A) [8,46]. Within the current framework they are defined 
as follows: 

pK = (pK)2iTjr,     K=\A,sA,B,C, (70) 
op* 

t? = PsAFA^(FAf,    t[A
A = ^FS^(FSV. (71) 
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The effective stress tensor ts
e
A captures the effects of entanglement in a porous 

medium with a disjoint solid phase. Again, the hydration stress tensor, t^, captures 
the physico-chemical forces between the vicinal fluid and the solid phase. Note that 
the macroscale pressure is not the average of mesoscale pressures, which is the 
average of a partial derivative, but it is the partial derivative of averaged quantities. 

The entropy inequality can be formulated in the usual manner [6, 8], and in the 
sense of Coleman and Noll [17] exploited to obtain restrictions on the forms of 
constitutive equations. We present the results in the next section. 

3.3.   CONSTITUTIVE RESTRICTIONS 

In this section, we present relations resulting from exploiting the entropy inequal- 
ity. These are pertinent to the formulation of the flow and heat transfer within the 
three-scale model. We present two sets of results which are a small portion of the 
more general results derived in [6, 8]. The first set of results hold at equilibrium 
and far from equilibrium, and come from the assumption that DsAT/Dt and dsA 

are not constitutive independent variables: 

£      e'p" (^ + A = 0, (72) 

tsA = _psAI + tsA+t\AAi (73) 

As in the two-scale case, Equation (72) is a generalization of the classical res- 
ult stating that temperature and entropy are dual variables. Equation (73) is a 
constitutive relation for tsA and indicates that the solid stress is composed of a 
thermodynamic pressure, the effective stress tensor, which is a measure of solid- 
solid interaction, and the hydration stress tensor which incorporates the effects of 
the fluid-solid interactions. 

The second set of results hold near equilibrium and come from forming quad- 
ratic terms in the entropy inequality so that the entropy generated is always non- 
negative for any process. The fact that this comes from a linearization process 
means that terms of cubic and higher order have been neglected; thus these results 
hold only near equilibrium. Linearizing about the rate of deformation tensor, d*, 
we obtain 

tK = -pKI + pKvK :dK,    K=\A,B,C. (74) 

As in the two-scale case, at equilibrium d* = 0 and the stress tensor of any of the 
fluid phases is proportional to the hydrostatic pressure. 
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Linearizing about DsAeA/Dt and DsAsB/Dt yields nonequilibrium capillary 
pressure relations: 

ÄA*A r)AsA 

+ eBpB 

deA 

dAB 

deA + £CPC 

dsA 

dAc 

deA 

sA^A 

+w 
DSAE 

Dt 
(75) 

P    - eAplA 
8A \A 

+ eBpB 

dsB 

8AB 

AAsA 

+ eAp*AÖ-^r + 

dsB + ecpc 

deB 

dAc     _fiD
! 

deB + W 
sAßB 

Dt 
(76) 

Note that the natural quantity which appears in regards to the pressure of the 
particles is the sum of the liquid and solid pressures. This can be interpreted as 
being the thermodynamic pressure of the particle phase, i.e. pA = p1A + psA. 

In these expressions we are defining capillary pressure to be the difference of 
pressures between two phases. The corresponding expression for cases in which 
interfacial effects are incorporated are given in Appendix C. Even without directly 
incorporating interfacial effects, the quantity of each liquid at any given time in 
space is determined by what configuration minimizes the energy of the system. 
The further away from this minimum energy configuration, the more quickly the 
system will try to re-establish itself through increasing the material time rate of 
change of the volume fractions. In a nonswelling system, a change in variables on 
the volume fraction is directly related to the change in saturation (if s is saturation, 
then s = eB/(l — eA)). See [1] for further discussion on nonequilibrium capillary 
pressure and its relation to nonequilibrium interfacial pressure. 

The constitutive relations for the exchange of momentum terms arise by linear- 
izing about \K'sA: 

a\A,sA = K \A - Yl ^ + pXAVsA - £/v 
L     K=sA,B,C 

-e'p 
de B dEsA 

vfir+i-) vr 

t)AiA 

w—   VeA- 
dsA 

i\AXA AAlA 

rs/li 

(77) 

„K,sA = K' J2        TK
M + pKVeK -eKpK 

M=)A,sA,B,C^K 

dAK 

deA VeJ 

-sKpK^VeB-£KpKicW + 7)K)VT\   K = BX- (78) 
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These relations are then used to eliminate the exchange of momentum terms, Tj^, 
from the momentum equations to obtain generalized Darcy relationships: 

yM,Si4   _   £] \A -eAVplA + sApiAg - sAplA^-VeA - e
AplA^V£

B- 

: (VEsA) - eApXA \— + nU\ V2-J , (79) _   A   \A^_ /a/lM 

£ P   dEsA 

8AK dAK 

eKVpK + sKpKg - eKpK—-VeA - eKpK—-Vefi- 
oeA de" 

~eKpK (iF"+ vK) Vr]'   K = BX (80) 

This is the macroscale form of the conservation of linear momentum where inertial 
terms are neglected and the hydrostatic forms of each liquid phase are used, i.e. 
t* = — pK\ (see [6, 8] for details). Changes in volume fractions, pressure, and 
temperature all cause the energy of the system to change, and these relations all 
reflect that fluid flows in such a way as to minimize the energy of the entire system 
[6, 8, 9]. 

If GK = pKIpK+AK is the Gibbs free energy, then the rate at which one phase 
is transfered to another phase is governed by 

GM -GK =CKe%t,     K,M = lA,sA,B,C,   K£M. (81) 

This equation is especially important for the case when M = \A and K = B, 
where B is the bulk liquid phase. Then e^ is the rate at which mass is transferred 
from the vicinal water to the bulk water. If the Gibbs free energy is higher in the 
bulk phase, then particles begin swelling, and if the opposite, the particles shrink. 

Finally, we have the equation which governs heat transfer, which is similar to 
the two-scale case, i.e., 

eAq\A + sAqsA + £BqB + eCqC = K . VJT. (82) 

The gradient of the temperature couples the heat transfer with the flow of the liquid, 
which in turn governs the deformation of the porous medium. Note that because of 
relation (54) the left hand side is not the medium-wide heat flux unless there is no 
relative motion of phases. 

All coefficients vK,p,K, K*', CK and K arise from the linearization procedure 
and may be a function of temperature, densities, volume fractions, and solid strain 
[8]. 

As in the two-scale case, the energy Equation (48), can be re-written making use 
of constitutive relations. We begin with Equations (47) and eliminate the internal 
energy in favor of the Helmholtz potential. Making use of constitutive assumptions 
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(67)-(69) and (82), using the chain rule, and summing over the four equations, we 
obtain 

„CM 
Y\T + Yi£A + Y3SB + YA ■ vlAM + Ys • vBM + Ye • vc's/i + 

+ T7 : EsA + T8 : dM + T9 : dB + r10 : dc + 

+       J2        J2YKMe^ + V.(KVT)+ph = 0, 
K=IAM,B,C M£K 

(83) 

where scalar coefficient functions are denoted as y, vector valued functions are 
denoted as y, and T denote second order tensor valued functions. The relationship 
between these coefficients and the Helmholtz potential are given in Appendix B. 

Term by term: The terms associated with y2 and y3 are due to the differential 
swelling of the three phases; y$, y$, and ye are due to convective heat transfer, 
sometimes refered to as sensible heat transfer; T7 is due to thermally induced stress 
change of the solid phase; T8, r9, r10, up to first order, are due to thermally induced 
pressure changes of the liquid phases; y^M are due to phase transformations; and 
K is due to heat conduction; see for example, de Vries [23]. 

As in the two-scale case, let us now consider some simplifying assumptions. 
Assume that the material time rates of change of the volume fractions are small, 
so that the terms involving y2 and y-$ can be neglected. Similarly, since inertial 
terms of the momentum equation were neglected in deriving (29), all terms of 
order \]AM ■ \lAM, yBM ■ vBM, vCM ■ \CM, dlA : dM, ds : dB, dc : dc, can also 
be consistently neglected. Further, assume there is no exchange of mass involving 
the solid phase so that e\A — es

lA = eB
A = eB

A = es^ = e^A = 0. If there is no 
external source of body heat (h = 0), then the heat equation is of the form: 

T + 
("&)> 

+ E 
K=sA, B,C 

«V (^ + »'" ?) VT+ 

vM,sA   I 

+ 

+ 

*V 
( 

dAB 

dT + nl 0vr-  E 
' V—IA   „ . 

dT K 

K=\A,sA,C 
dT 

(£ + *-<) vr Y   Td^i 
K=\AM,B 

yB,SA   _|_ 

yCM   _|_ 

+ T — [eA(FsArl ■ tsA • (FsAyT] : EsA 

_^r^V.vM-£
ßr^V.vfi-£

cT^V.vc + 
dT 8T dT 
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+     E E    %[G»-GK + nr,M-nK)- 
K=IA,B,C Mj=(K,sA) 

d 
T — 

8T \PM   PK) 
+ V • (K • VT) = 0. (84) 

Thus, rate of flow of a fluid phase is driven by (1) the gradient of the temperature, 
which is strongly affected by the interaction of the phases; (2) how temperature 
affects momentum transfer between phases; (3) the rate at which the solid phase is 
deforming; (4) the effect of temperature on the pressure of each phase individually 
- note that if there is no exchange of mass between phases and the fluid phases 
are considered incompressible, these terms would vanish; and (5) the rate of mass 
exchanged between phases. 

4.  Discussion 

Consider the following system. Let colloidal sized molecules (polymers, clay plate- 
lets, or any sub-micron sized particle) be in a solvent bath such that all the solvent is 
adsorbed to the molecules. The solvent plus the colloid sized molecules considered 
as a single body can be thought of as a swelling particle. Now place a large number 
of the swelling particles in a bulk solvent bath. If the bath is suitably small, then the 
particles and solvent bath will form a partially saturated porous medium consisting 
of swelling porous particles. The solvent continues to saturate the particles, but the 
spaces between particles may contain vapor and/or liquid solvent. The net result 
is a swelling unsaturated porous medium with three distinct scales. The micro- 
scale consists of two phases, the macromolecule and the adsorbed solvent. The 
mesoscale consists of a homogenization of the macromolecules with the adsorbed 
solvent. The mesoscale particles when homogenized with the bulk liquid and vapor 
phase solvent form the macroscale. Such a model is consistent with many natural 
soils, foods, drug delivery substrates, wood and many other systems. The model 
proposed herein allows one to simulate flows of mass and energy in such systems. 

The governing equations obtained using classical irreversible thermodynamics 
results in a generalization of De Vries' model (1). In particular, it suggests moisture 
flow in a porous medium can be driven by temperature gradients [15, 16, 50]. In 
addition, early experiments [24, 47] also suggest flows may be driven by thermal 
gradients. We believe the analysis presented here provides a rational framework for 
this phenomenon. Of specific note in this regard is that the coefficients multiplying 
VI in (38), (44), (B.4-B.6), (84) are nonzero and strongly affected by the phase- 
interactions due to the heat capacity terms and the fact that the entropy inequality 
does not mandate that BAx/dT = -T?

1
 on the mesoscale, nor does it mandate 

8AK/dT — -7]K on the macroscale. In both unsaturated media where there is a 
liquid/vapor interface, and in colloids where the solvent energy is strongly per- 
turbed by the surface, the interfaces liquid-vapor and solid-liquid play a predom- 
inant role. 
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This theoretical work suggests that to improve the understanding of heat and 
moisture transport in swelling porous media, experiments are needed to study the 
effects temperature has on the exchange of mechanical momentum between phases, 
as well as differential swelling of the various phases. In addition, the relative im- 
portance of thermal stresses induced on the solid and liquid phases should also be 
studied. 

Appendix A. Nomenclature 

Superscripts, subscripts, and other notations 

A:B   ELE5=I^7- 
a        a-phase on mesoscale. 
aß       aß -interface on mesoscale. 
aA       a-phase in mesoscale region A on macroscale. 
K        K-phase in macroscale REV (K = A, B, C) (see Figure 2). 

denotes exchange from other interface or phase. 
*•'       difference of the two quantities, i.e., •* — •'. 

Material time derivative with respect to the solid phase 
(Ds/DrorDs/7D0(2). 

Latin symbols 

A01, AK, AKM    Macroscopic internal (excess surface) specific Heimholte 
free energy [J/kg] (16). 

d", d*, dKM     Symmetric gradient of phase/interface velocity 
(deformation rate tensor) [1/s] (20). 

^ö> ^M^KM        Mass transfer from phase/interface 
(subscript) to phase (superscript) per unit 
REV volume [kg/(s m3)] (see the conservation of mass equation). 

^KLM Mass transfer from contact line 
(subscript) to interface (superscript) per unit REV 
volume [kg/s-m3] (see the conservation of mass for interfaces 
in Appendix C). 

Ea, EK Energy density [J/kg] (see conservation of energy equation). 
EKM Surface excess energy density [J/kg] (see interfacial conservation 

of energy equation in Appendix C). 
Es, EsA Macroscopic strain tensor of solid phase [-] (20). 
E*w Macroscopic strain tensor of interface [-] (Appendix C). 
FsA Gradient of function relating averaged material coordinates 

of solid phase, X, and their spatial coordinates, x, 
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pATM 

g 
Ga,GK,GKM 

hahKhKM 

K 

K\K*,K™ 

pa,pK,pKM 

q«,qWM 

Qß, QM-* QKM 

oKM 

t 
T 

t1   tlA 

rpa    nPA     HP" 

fpKM 
lKLM 

Ua,UK 

„ATAf 

denoted as VxX(X)[m] (20). 
Gradient of function relating averaged material coordinates 
of interface to their spatial coordinates [m] (20). 
External supply of momentum (gravity) [m/s2]. 
(excess surface) Gibbs free energy [J/kg] (30). 
External supply of energy of phase/interface [J/(kgs)] 
(see conservation of energy). 
Second-order tensor coefficient defined in (31) [J/(m s K)]. 
For a thermally isotropic medium, it represents 
thermal conductivity. 
Second-order tensor coefficient defined in (28) [m3 s/kg]. 
Related to hydraulic conductivity in Darcy's law. 
Macroscopic thermodynamic pressure of phase/interface 
[N/m2] (22). 
Heat flux vector for the phase/interface [J/(m2 s)], 
or interface [J/(m s)] (see conservation of energy). 
Energy transfer from phase/interface (subscript) 
to phase (superscript) per unit REV volume 
[J/(m3 s)] (see the conservation of energy equation). 
Energy transfer from contact line (subscript) to interface 
(superscript) per unit REV volume [J/(m3 s)] 
(see the conservation of energy for interfaces in Appendix C). 
Time [s]. 
Temperature [K]. 
Stress tensor for the phase [N/m2], or interface [N/m] 
(see the conservation of momentum equation). 
Stress in solid phase due to solid matrix strain [N/m2] (23). 
Stress in liquid phase due to solid matrix strain [N/m2] (23). 
Momentum transfer through mechanical interactions 
from phase/interface (subscript) to phase (superscript) 
per unit REV volume [N/m3] (see the conservation 
of momentum equation). 
Momentum transfer through mechanical interactions from 
contact line (subscript) to interface (superscript) per unit 
REV volume [N/m3] (see the conservation of momentum 
for interfaces in Appendix C). 
Velocity of phase (superscript) relative to the medium [m/s]. 
Velocity of phase (superscript) [m/s]. 
Velocity of interface [m/s]. 
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Greek Symbols 

sa Volume fraction of a-phase in mesoscale REV [-]. 
eK Volume fraction of macroscale region A in macroscale REV [-]. 
sKM Area fraction of ^TM-interface in macroscale REV [1/m]. 
rja,riK ,rjKM   Entropy of phase/interface [J/(kg-K)]. 
v Fourth-order tensor coefficient defined in (26) [m2/s]. 

For an isotropic fluid, this coefficient represents 
the dynamic viscosity. 

ß Constitutive coefficient defined in near-equilibrium capillary 
relationship (27) [N s/m2]. 

pa Mass density of a-phase averaged over mesoscale REV [kg/m3]. 
pK Mass density of ^r-phase on macroscale [kg/m3] so that sK pK 

is the total mass of K-phase in macroscopic REV divided 
by the volume of macroscopic REV. 

pKM Excess mass density of /fM-interface averaged 
over macroscale REV [kg/m2] so that eKMpKM 

is the total mass of ATM-interface in macroscale REV divided 
by the volume of the macroscale REV. 

Appendix B. Thermodynamic Definitions of Coefficients for Three-Scale 
Heat Equation 

The thermodynamic definitions of the coefficients for the three-scale heat equation, 
given by Equation (83), are given here. Recall that scalar coefficient functions are 
denoted as y, vector valued functions are denoted as y, and T denote second order 
tensor valued functions. Using Es = (Fs)r • ds • Fs, it can be shown that these 
coefficients are related to the Helmholtz potential by 

Y\  = Tf>öfi = -PC
P> (B1> 

dAsA dAXA 

Y2 = p
XA + p*A -pc - eApsAj-r - eAPlA-^j- ~ 

-eV^ - SV^F - T-2- (pXA + psA -pc- eAp*A ---- 
deA '   dec        dTV •     r deA 

A   \A "A D   D oA r-   /-. a A 

dT V 

;) 

-(r-'w )>■"-*■%■ 
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K3   = 
pB_pC_EApSA dA sA 

dSB 
- fiy * 3A1A 

dsB 

A    RdAB 

^  iAdAlA 

-EP   IF 

-e P 
c„c^_Tl_ 

deB        dT 

sBpB 
dAB 

deB 
-scpc 

eApsA 
dA sA 

dsB 

-(r-T^y+v* 97" 
(B.3) 

YA 

S AIA a^U 
_eApU™_V£A _ eAplA^_WeB + plAV£A _ 

dsA de1 

-enp 
ZA^A fl2AlA 3 34u 

ae^1 

lM 

+£> 
AJA°A     v„B _ nlAycAj_cAn\A0/i      . ^A^ 

deB 
Ve* - p1* VsA + s V 

3ES/1 
(B.4) 

(K.V.V.,sA+       £      f^+£V"(^+^-^) ■M   # I vr - 
K=SA,B,C 

dT 
\A\-l    vlA,sA (KlAyl ■ V 

j<r=s/i,js,c 

K5   = 
3^B. 
dsA 

2AB d*A 
_e V^rV«A - 8BpB^jV8B + pBVeB + eBpBT"--^-VT + 

d 
+T — 

dT deA 3eß 
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= (KV1 • v** +   X)   fJ + £ V (IF + "B - CP) VT 
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8T 
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where pA = slplAx + espsAs, and the molar heat capacities for each fluid phase 
and the porous medium are (see [14], pp. 84, 186) 

4 = r(jp\,   K = \A,B,C, <B12> 

EC.K nK„K e  P  cp, 
K=lA,sA,B,C 

(B.13) 

where cK may be a function of the volume fractions. The second form of equations 
(B.2)-(B. 10) were obtained by incorporating constitutive relations (73)-(80). 

Appendix C. Three-Scale Governing Equations with Interfacial Effects 

In this section, we provide the governing equations for the three-scale model where 
interfacial effects are not neglected. The derivation of the equations are not 
provided, as the ideas are presented in Section 3. The details regarding the physical 
interpretation of interfacial thermodynamic variables at the mesoscale (two-phase 
model) are given in [26, 44], and for the three-scale model in [6, 7]. Refering 
to Figure 2, there are six interfaces. Interface \AB is the macroscopic interface 
between the vicinal fluid of the clay particle and the bulk phase B, where B is a 
fluid phase - either gas or liquid. Other interfaces include \AC, sAB, sAC, IsA 
and BC. It is assumed that contact lines (the intersection of three interfaces) have 
negligible thermodynamic properties, although this too can be incorporated into 
the current model [29]. The definition of the variables presented in the following 
equations are given in Appendix A. 

The conservation of mass for the bulk phase K = \A, sA, B, C is given by 

DK(sKPK) +eKpKV.vK=: J2eK
KM,     K,M = lA,sA,B,C,        (C.1) 

where e\M represents the net mass gained by the K-phase from the KM interface. 
The conservation of mass for the KM interface is given by 

r^KM(s,KM nKM\ D       (£       P       > + sKMpKMy . yKM 

Dt 

=   £  *f S, - *§* - **.    K,L,M = \A,sA,B,C, (C.2) 

where eKM is the interfacial area density of interface KM, with the exception that 
we define eUA = sA (see [7] for details). Further, e\fM represents the amount of 
mass gained by interface KM through the contact line KLM. The net mass the 
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contact line has is zero (by assumption), and hence there is a restriction on the 
exchange terms: 

E *KLIi = 0. (C.3) 
PQ=KL,KM,LM 

Similarly, the conservation of momentum for the KM-phase is 

sKMpKM^_JL v • (eKMtKM) - eKMpKMg 

=   E   TKLM-TKM-T%M,     K,L,M = IA,&A,B.C, (C.4) 

with the restriction 

E        (T^ + ^Lv/>ß)=0. (C.5) 
PQ=KL,KM,LM 

The conservation of energy for interface KM is given by 

T^KMpKM 
eKM   KM^__±__ _ £KM^KM . yyKM _ y . ^KM   KMs _ £KM   KM^KM 

—   V  nKM  ~(nK   4-f*    „K.KM , -     Z^    ÜKLM       \-UKM+ 
lKM-V + 

L^KM 

+eK
KM{EK'KM + \yK>KM ■ v*-*")] - 

-IQKM + ^KM ■ vM'KM + %M{E»*M + {vM>KM ■ vM'KM)l     (C.6) 

where the restriction is now 

E   [Q%M+m* ■ ypQ+*I
Q

LMV
PQ+yß • vpß)]=o. 

PQ=KL,KM,LM 

(C.7) 

The constitutive independent variables for this model are 

eA, eB, eAB, eAC, sBC, Ve\ VeB, VeAB, VsAC, VsBC, 

T, VJ, pK, d*, v*'sA,     K = \A, B, C 

psA, EsA, VpsA, VEsA,pKL, EKL, \KL<sA, VpKL, VEKL, 

KL = \sA,lAB,lAC,sAB,sAC,BC. (C.8) 

The interfacial pressures are defined thermodynamically as 

fiAKM 

PKM=(p^r-s^-. (c.9) 
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The near-equilibrium capillary pressure relations are 

AAIA AAUA 8AB 

fiAKM 

KM=)AB,\AC,sAB,sAC 

- E    «'V-^J-H-ü*
5
^. <c-10> 

#M=lAß,sAß,ßC 

°e Ub KM=lAB,sAB,BC 

- E    «'V^+^^DT- (C11) 
KAf=MC,sAC,ßC 

Darcy's law for a bulk phase fluid K (K = ß, C) is now 

L (C.12) 

^   dsAK deBC J 

The heat equation has the following form 

n f + y2^ + y3e* + £ YfMeKM + E ^ • ^ + £ ^ • vKMM + 

+ r7 : E*A + E^M : E™ + £r* : d* + E E YIU*KM + 
KM K K   M^K 

+ E E ylVJOtu+v • <KV5r) + ^ = °« (C13) 

KM L^K,M 

where scalar coefficient functions are denoted as y, vector valued functions are 
denoted as y, and T denote second order tensor valued functions. It can be shown 
that these coefficients are related to the Heimholte potential by [6, 8] 

n = -PC„ (C-W) 

n = j^"-r±G^), (eis) 
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K3 = £BeB - T^(ßBeB), 

yKM = jjKUkKU _ T^_(^MkKM)t 
d 

df 
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(C.16) 

(C.17) 

Yl = K-1 • v^ +j:nM + eKpK (d-^ + r,K- cj) V7 - 
U-AV \ / 

-7--L K-l . ytf ,sA 

(C.18) 
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(C19) 

(C.20) 

(C.21) 

(C.22) 

(C.23) 

(C.24) 
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Abstract 

Thermomechanical microstructural dual porosity models for swelling porous media incorporating cou- 
pled effects of hydration, heat transfer and mechanical deformation are proposed. These models are obtained 
by generalizing the three-scale system of Murad and Cushman [56,57] to accommodate heat transfer effects 
and their influence on swelling. The microscale consists of macromolecular structures (clay platelets, 
polymers, shales, biological tissues, gels) in a solvent (adsorbed water), both of which are considered as 
distinct nonoverlaying continua. These continua are homogenized to the meso (intermediate scale) in the 
spirit of hybrid mixture theory (HMT), so that at the mesoscale they may be thought of as two overlaying 
continua. Application of HMT leads to a two-scale model which incorporates coupled thermal and physico- 
chemical effects between the macromolecules and adsorbed solvent. Further, a three-scale model is obtained 
by homogenizing the particles (clusters consisting of macromolecules and adsorbed solvent) with the bulk 
solvent (solvent not within but next to the swelling particles). This yields a macroscopic microstructural 
model of dual porosity type. In the macroscopic swelling medium the mesoscale particles act as distributed 
sources/sinks of mass, momentum and energy to the macroscale bulk phase system. A modified Green's 
function method is used to reduce the dual porosity system to a single-porosity system with memory. The 
resultant theory provides a rigorous derivation of creep phenomena which are due to delayed intra-particle 
drainage (e.g. secondary consolidation of clay soils). In addition, the model reproduces a class of lumped- 
parameter models for fluid flow, heat conduction and momentum transfer where the distributed source/sink 
transfer function is a classical exchange term assumed proportional to the difference between the potentials 
in the bulk phase and swelling particles. © 2000 Elsevier Science Ltd. All rights reserved. 
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1. Introduction 

Due to the physico-chemical forces between phases, many porous media (macromolecular- 
solvent systems) can swell or shrink resulting in macroscopic behavior which may differ signifi- 
cantly from non-swelling media. Examples of such media include polymers, shales, clays and 
cartilages. It is crucial to understand the constitutive behavior of these materials for applications 
involving almost all aspects of life. Swelling polymers have numerous technological applications 
in drug delivery, contact lenses, semiconductor manufacturing and food stuffs. In oil and gas 
production swelling shales form 75% of drilled formations and have been responsible for 90% of 
wellbore instability problems. Clay soils covers 80% of the earth's crust and consequently they 
play a critical role in all aspects of nutrition on earth. In foundation engineering the clay soil 
swells and heaves upward or drys out and shrinks causing damage to the foundations of buildings, 
bridges, highways, and runways. All of these systems have in common a structure that can be 
loosely identified as a mixture of macromolecules (polymers, clay platelets) and solvent (water, 
organic fluid). The solvent is either adsorbed to the macromolecules or in bulk (i.e. free of any 
adsorptive force). The clusters of macromolecules and adsorbed solvent form fine particles which 
swell under imbibition and shrink under drainage. Although everything derived in this paper can 
be applied to a wide variety of swelling systems, for ease of exposition, we henceforth restrict our 
discussion to swelling clay soils. 

The thermomechanical response of swelling clays has received great attention. Due to their low 
hydraulic conductivity, plasticity, swelling and adsorptive capacity for contaminants, clays have 
been used to inhibit the migration of contaminants to the environment. In isolating contaminants 
from the biosphere, clays act as natural barriers. In the case of nuclear, heat-generating wastes, 
canisters of vitrified radioactive waste are buried in compacted clay. The clay acts as a geo- 
chemical filter to prevent the migration of radionuclides in groundwater. Efficient heat transfer 
between the vitrified nuclear wastes and surrounding rocks is one of the desired properties re- 
quired for the engineered barrier. The heating of compacted bentonitic clays may also lead to 
expansion and cracking and thus enhance the migration of radionuclides. Other applications of 
the coupling between mechanical and thermal effects appear in enhanced oil recovery technology, 
extraction of energy from pressurized geothermal reservoirs and frost heave. 

Thermomechanical models for granular non-swelling porous media (e.g. rock or sandstone) 
have been widely discussed in the literature (see e.g. [7,14,68]). A major assumption underlying 
these models is that no other forces except those of direct contact (effective stresses and pore 
pressure) are present. Porous media characterized by the absence of physico-chemical interaction 
between the pore water and solid matrix, such as granular materials, are governed by the above 
theories. On the other hand, hydrophilic clays such as smectities (montmorillonites) with 2:1 
lattice exhibit complex physico-chemical interaction and their constitutive behavior is significantly 
more complicated. 

Smectitic minerals have a negative charge which is neutralized by exchangeable cations. When a 
montmorillonite is exposed to water, the water penetrates the superimposed layers and forces 
them apart causing swelling. The attraction (hydrophilicity) of montmorillonite to water is one of 
the causes of swelling. The force causing clay to swell upon hydration is commonly called the 
hydration force. Hydration causes the water properties to vary with the proximity to the solid 
surface [50-52]. The interlamellar water is termed adsorbed water (or vicinal water) to distinguish 
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it from its bulk or free-phase counterpart (i.e. water free of any adsorptive force). The properties 
of vicinal water depend in a complex way on the structure of the surfaces and the distance between 
surfaces [23]. In addition, the large specific surface areas of the 2:1 layer silicates and their charged 
character magnify the effects of hydration forces. Consequently, unlike granular non-swelling 
media, whose thermoelastic theories assume non-interacting bulk phase water, the thermome- 
chanics of swelling clays is somewhat different. A macroscopic model for smectic clays requires an 
accurate description of the anomalous behavior of the vicinal fluid. Hence, the treatment of the 
adsorbed water as a separate phase from the bulk water is mandatory. 

Clusters of clay platelets when hydrated form "particles" consisting of an assemblage of 
stacked silicate layers and adsorbed water. These particles swell under hydration and shrink under 
desication. In general, intermolecular forces between the adsorbed water and clay minerals have 
three contributions: (i) a molecular Van der Walls component arising from the long-ranged at- 
traction between clay platelets and the vicinal fluid: (ii) an electrostatic part arising from ionic 
double layer interaction and (iii) a structural component associated with the hydration forces. 
Both electrostatic double layer and hydration forces cause the stacked silicate layers to repulse one 
another and thereby lead to particle swelling. Experimental evidence indicates that for intersticies 
smaller than 50 A, swelling is due primarily to hydration forces and diffuse double layer forces are 
believed too weak to explain the anomalous behavior of the adsorbed water (see [25,40,51,52]). At 
the finest scale (microscale), the adsorbed water is viewed as a thin film coating the mineral 
surfaces. The presence of hydration forces modifies the behavior of a confined thin film relative to 
the bulk phase from which the film was formed [23,25,69], Derjaguin [25] defined the microscopic 
concept of disjoining pressure as an excess in film pressure relative to the bulk phase. The av- 
eraged counterpart of the disjoining pressure is the swelling pressure TI defined as an overburden 
pressure P relative to the bulk pressure pB (TI ~P -ps) that must be applied to a saturated 
mixture of clay and adsorbed water in equilibrium with the bulk water to keep the layers from 
moving apart. The relationship between TI and the void fraction e, e = <j>\/(\ — <j)\) (fa denotes 
the volume fraction) was experimentally measured by Low [50,51] in a classical reverse osmosis 
swelling experiment with a parallel packing of lamellar montmorillonite clay (see Fig. 1). 

Considering PB = /?atm, with />atm denoting the atmospheric pressure, Low examined the equi- 
librium swelling pressure of different montmorillonites saturated with incompressible adsorbed 
water and found that the dimensionless swelling pressure (TI/patm) satisfies the empirical relation 

Semipermeable membrane 

Fig. 1. Low's swelling pressure experiment. 
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J7+l-«p(.(I-I))=««p(2), (1.1) 

where e* is the void fraction when 77 = 0 (when P = ps), a is a constant related to the specific 
surface area and cation exchange capacity, B = exp(-a/e*) and the notation 77 for the dimen- 
sionless swelling pressure has been maintained. 

The effects of temperature on hydration stresses have also been discussed in the literature, (see 
e.g. [77]). Derjaguin et al. [26] have shown that the effective thermal expansion of the adsorbed 
water was higher than that of bulk water at low temperatures/Dehydration of the adsorbed water 
due to heating is a widely accepted phenomenon which has been verified experimentally. As 
temperature increases the mobility of the adsorbed water increases and it gradually becomes free 
water. This thermally induced adsorbed water degeneration has been modeled within the 
framework of the mixture theory by Ma and Hueckel [53]. In this framework the adsorbed water 
is treated as an immobile phase and the inter-phase adsorbed-bulk water mass transfer is modeled 
as a source term in the bulk fluid mass balances which are assumed to depend linearly on a 
temperature rate. 

The derivation of macroscale governing equations for thermomechanical processes in porous 
media may be accomplished within the framework of the hybrid mixture theory (HMT), which is 
a slight modification of the classical mixture theory of Bowen [15]. In classical mixture theory a 
single-phase medium composed of N constituents is viewed as N overlaying continua. Bowen [15] 
extended this idea to model a porous medium so that at the macroscale a two-phase medium is 
viewed as two overlaying continua. In his work, macroscopic forms of the field equations in- 
corporating exchange terms between the overlaying continua, are postulated. Hassanizadeh and 
Gray [32,33] showed that if the microscopic field equations are averaged then the terms in 
Bowen's macroscopic field equations can be identified precisely with microscopic counterparts. 
The combination of averaging and mixture theory is referred to as hybrid mixture theory (HMT). 
In both of these formulations, the constitutive restrictions are determined at the macroscale by 
exploiting the entropy inequality using the Coleman and Noll method [21]. HMT has been ex- 
tensively used by Hassanizadeh and Gray [34] to improve our understanding of two-phase flow in 
non-swelling porous media. 

The mixture theory approach has also been applied to derive a comprehensive macroscopic 
constitutive theory for swelling porous media (see [28,37,42,53]). In reference [28] Eringen was 
able to reproduce the extra ad-hoc overburden potential component in Darcy's law for swelling 
systems (see [61]). Hydration swelling effects have also been captured within alternative non- 
equilibrium thermodynamic approaches. Using the general principles of irreversible thermody- 
namics, Biot [13] formulated a theory of poroelastic systems undergoing finite deformations. His 
framework incorporates a fluid adsorptive component wherein hydration effects are captured 
upon selection of a proper set of independent constitutive variables for the free energy of the 
mixture. Biot [13] also obtained a generalized form of Darcy's law wherein the driving mechanism 
for water flow is the gradient of a gravi-chemical potential. Contrary to classical belief, this 
chemical potential gradient is more general than a pressure gradient as it involves an additional 
interaction potential gradient accounting for the adsorptive character of the clay platelets. Fur- 
ther, Achanta et al. [1] formulated an isothermal HMT theory for highly compacted clays wherein 
constitutive equations, capable of reproducing Low's swelling pressure relation (1.1) at equilib- 
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rium, were obtained within the Coleman-Noll method of exploitation of the entropy inequality. 
Achanta's approach provided a rational basis for explaining the water adsorption component in 
swelling clay pastes. Furthermore, Heidug and Wong [35] formulated a non-equilibrium ther- 
modynamics approach for shale-water-electrolyte systems which also includes the electrostatic 
component of swelling. The approach is based on the general Onsager's reciprocity relations and 
leads to a theory of constitution which generalizes Biot's theory of poroelasticity to account for 
perturbations in the pore fluid's chemistry due to physical-chemical interaction. The theory was 
improved by Huyghe and Janssen [38] who, neglecting hydration stresses, adopted a Lagrangian 
form of the entropy inequality to derive a quadriphasic theory of swelling porous media which 
incorporates both Donnan osmosis and electrical potential as driving forces for fluid flow. 

Despite the aforementioned works have attempted to formulate thermodynamically the com- 
plex nature of solid-fluid physico-chemical interaction in swelling systems, to the author's 
knowledge few works have discussed the additional difficulties that arise from the complex hie- 
rarquical structure of these systems. Swelling porous media are more accurate treated within 
three-scale models, i.e. the derivation of macroscopic governing equations requires two levels of 
averaging (micro to meso and meso to macro). Depicted in Fig. 2 is a three-scale porous matrix. 
Swelling particles are in contact with one another and bulk water. Each particle consists of clay 
colloids and adsorbed water. At the microscale the model has two phases, the disjoint clay 
platelets and the adsorbed water. The mesoscale (the homogenized microscale) corresponds to the 
Darcy-scale for adsorbed water, wherein mesoscopic transport equations are obtained by aver- 
aging the point microscopic equations. These averaged equations are coupled with Stokesian bulk 
water equations. At the macroscale, bulk water is homogenized with the mesoscale particles and 
large scale averaged equations are derived by upscaling the mesoscopic structure. A first attempt 
towards the extension of HMT to three-scale isothermal swelling systems was presented in 
[10,11,55-57], (see also [24] for a summary of this early work). In a three-scale picture, the ap- 
pearance of two levels of hydrodynamics related to adsorbed and bulk water phases occurring 
simultaneously at disparate space and time scales increases substantially the complexity of the 
macroscopic governing equations, as the macroscopic model now inherits the fading memory 
effects associated with the difference in the time scales between the adsorbed and bulk water flows. 

bulk water 

Macroscale 

clay plait 
vicinal water 

bnlkmre clay panicle 

Mesoscale 

clay platelets 

vicinal water 

Microscale 

Fig. 2. Three-scale model for clay. 
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A three-scale model for a swelling medium resembles in form a dual porosity model for 
fractured media (see e.g. [9,74]). In the macroscopic picture of a dual porosity model, an inter- 
connected network of fractures (playing the role of the bulk system) provides most of the global 
permeability for macroscopic fluid flow whereas most of the fluid storage takes place in the 
relatively low permeability matrix block system (analogous to the clay particles). These two 
systems are coupled via a distributed source/sink transfer function which quantifies the mass 
exchange between them. In dual porosity systems, one component is essentially responsible for 
storage and the other for transport. Thus, an accurate description of the source/sink transfer 
function between the two systems is of utmost importance. Early approaches proposed to des- 
cribe this mass-transfer function were based on lumped-parameter hydrodynamic models (e.g. 
[9,74]) wherein the distributed source/sink is given as a classical exchange term, assumed pro- 
portional to the difference between the corresponding fractured and matrix (mean) potentials. 
First proposed for single-phase compressible flow in rigid fissured porous media, lumped-pa- 
rameter models have been extended to two-phase flows [78], anisotropic systems ([63] within the 
framework of large scale averaging), isothermal poroelastic fissured media [75] and coupled 
thermo-poroelasticity ([8]). Lumped-parameter models make use of a time scale assumption 
where at each time, the intra-block (or intra-particle) fluid is assumed uniformly distributed 
throughout the block (particle) domain reaching equilibrium instantaneously when disturbed by 
the bulk phase. By treating the blocks in a lumped-parameter fashion, the particle geometry is 
suppressed and the distinction between the space and time scales of the bulk phase and clay 
particles are overlooked [70]. 

In order to overcome the aforementioned drawbacks of lumped parameter models, micro- 
structural dual porosity models for flow in rigid fractured media have been proposed by Arbogast 
and coworkers [3,4,27]. In this framework, the macroscopic medium is covered by two distinct 
interacting coexisting systems: the macroscopic system, which is related to the global fracture 
flow, and the mesoscopic system, which is represented by the matrix blocks at the mesoscale. The 
macroscopic picture associated to a microstructural dual porosity model is a continuous distri- 
bution of mesoscopic matrix blocks with prescribed geometry over the macroscopic fracture 
domain. These two systems are coupled via a microstructural mass transfer function. Rather than 
treated it in a simplified lumped parameter manner, (i.e. proportional to a pressure difference), 
this function is explicitly calculated by solving and averaging the matrix block equations. By 
incorporating details of the flow inherent to particle geometry the microstructural model explicitly 
captures the length scales of the physical problem. Consequently the dual porosity model provides 
a more accurate portrait of the distributed mass exchange between the two coexisting systems. 

Extensions of Arbogast and coworkers microstructural models have been proposed by Pes- 
zynska [60] for non-isothermal flow in rigid media and by Murad and Cushman [57] for iso- 
thermal flow in deformable porous media. Here, we derive microstructural dual porosity models 
for non-isothermal swelling porous media with the aim of coupling thermal and physico-chemical 
effects. 

We also exploit some consequences of the proposed dual porosity model. We show that our 
approach is capable of reproducing other well-known models. We begin by showing that appli- 
cation of a modified Green's function technique, developed by Feng and Michaelides [30] for the 
heat equation, reduces the dual porosity model to a single integro-differential equation of Volterra 
type. The integro-differential equation is related to some viscoelastic models for secondary con- 
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solidation (continued deformation of the clay skeleton after the bulk water has been substantially 
drained). The secondary consolidation stage has been characterized by creep viscoelastic behavior 
(see e.g. [16,31,41,44,48,73,76]) which arise from the delayed drainage of the adsorbed water after 
the bulk water has been drained from the larger pores (see [37,72]). Macroscopic viscoelastic 
models with fading memory, with the macroscopic stress/strain relation represented in terms of 
hereditary constitutive laws (e.g. Hooke's law with memory), have been postulated to describe 
delayed exchange processes between micro and macropores (see e.g. [22]). In particular, such 
hereditary models have also been postulated by Biot [13] aiming at capturing the delayed pene- 
tration of the fluid in the micropores due to possible adsorption effects in swelling systems. Within 
the proposed approach, we show that application of the Green's function method leads to an 
explicit relation between the microstructural dual porosity model and the parameters appearing in 
the single-porosity model with memory (e.g. the convolution kernel). Thus, a notable consequence 
of the approach proposed herein is that it provides a rational basis for explaining hereditary 
constitutive laws governing secondary compression in terms of micromechanical analysis. Since 
the macroscopic parameters can explicitly be correlated with microstructure response, our ap- 
proach furnishes a new direction for a proper interpretation of these coefficients in terms of the 
knowledge of particle geometry. This correlation provides a better way of representing memory 
effects in terms of the double-porosity structure of the medium. 

We also show how lumped-parameter models can be viewed as special cases of the general 
microstructural model. Firstly, we reproduce the lumped-heat-capacity system [36] by assuming 
that particle thermal conductivity is sufficiently large compared to the particle surface-convection 
heat transfer coefficient. In this context we examine the so-called two-equation models in the sense 
of Quintard and Whitaker [62,64,65] (see also [43]) wherein different temperatures are assigned to 
the clay particles and bulk water and the distributed energy transfer function is treated in a 
lumped parameter fashion. Then we discuss the validity of the one-equation model for which the 
principle of local thermal equilibrium is valid with a single temperature locally assigned to both 
clay particles and bulk water. The ideas underlying the validity of two-equation models for heat 
transfer in rigid porous media have been extensively discussed by Quintard and Whitaker 
[62,64,65] and Kaviany [43] within the context of volume averaging and also in the context of 
homogenization by Auriault [5]. Here we clarify the assumptions underlying this approach for 
swelling porous media. Further, departing from the general microstructural dual porosity model 
and adopting a time scale assumption in the flow problem we reproduce the lumped-parameter 
hydrodynamical models wherein a Warren-Root type coupling (proportional to a potential dif- 
ference) dictates the constitutive behavior of the mass transfer between particles and bulk phase 
water. Moreover, we relate this result with the well known lumped-parameter isothermal and non- 
isothermal consolidation theories with double porosity [8,75]). 

Throughout the development of the article we assume that physico-chemical forces are due to 
primarily hydration forces. The exchangeable cations are condensed on the clay surface, i.e., they 
are concentrated in the Stern layer, in such a way that the negative surface charge is effectively 
screened. In other words, following Low [52], surface hydration is the dominant component of 
swelling and the diffuse layer contributes only weakly to the swelling pressure. Extensions of the 
proposed model to the case wherein swelling is due to a combination of electrostatic and hy- 
dration forces can be obtained by coupling the proposed approach with the thermodynamical 
framework developed by Huyghe and Janssen [38]. 
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2. Two-scale thermomechanical model for the clay particles 

We begin by reviewing the two-scale results of the mesoscale constitutive theory of Murad and 
Cushman [56,57] obtained within the framework of the HMT for an isothermal system composed 
of clay platelets and adsorbed-water (the clay particle). Then we follow the approach of Bringen 
[28] and incorporate the coupling between thermal and physico-chemical effects by manipulating 
the energy equation. In this fashion we obtain a proper form of the energy balance for swelling 
media which incorporate new quantities such as mechanical work of hydration stresses and in- 
trinsic dissipation. 

2.1. Non-equilibrium results 

Consider the clay particles as a mixture of two phases (the solid clay platelets and liquid ad- 
sorbed water) viewed as coexisting continua, which undergo independent motions 
x = xa(Xa,t),a. = \,s with respect to each reference configuration (here x denotes the spatial 
position of the particle in the a-phase at time t with respect to a reference position Xa). Let the 
subscript a = 1, s denote the adsorbed liquid and solid phase, respectively, and let pa, ta, $a, Ta and 
Aa denote the averaged density, symmetric stress tensor, volume fraction, temperature and in- 
tensive Helmholtz potential of phase a. Further, let the average mesoscopic strain tensor of the 
solid phase, Es, be given as 

ES = ^(CS-I) 

where Cs = FjFs with Fs - grad JCS denoting the deformation gradient of the solid phase (with 
grad denoting differentiation with respect to a material particle on the mesoscale). We shall re- 
strict our analysis to the range of moderate moisture contents (see [57]) which includes moisture 
content greater than that occupied by 10 adsorbed fluid monolayers. In this range, at equilibrium, 
hydration forces are able to withstand the normal hydrostatic swelling pressure but, on the other 
hand, deviatoric shear stresses are only supported by effective stresses at equilibrium. Within the 
framework of HMT, the goal in deriving a constitutive theory capable of capturing particle 
swelling in the range of moderate moisture content is to postulate dependence of A\ on 4>\- This 
allows the adsorbed liquid structure to be a function of the separation of the clay platelets. Recall 
that the definition of vicinal or adsorbed water is that water whose properties vary with distance 
from the solid phase. This change is accounted for on the mesoscale by the volume fraction which 
is the mesoscopic thermodynamic internal variable which accounts for physico-chemical effects. 
At the mesoscale, 0, plays an analogous role to thin film thickness, h, at the microscale which is 
the internal state variable accounting for the structural component of disjoining pressure (see e.g. 
[25]^. If one wants to consider a dryer system, say of an order of one to ten layers of water (2.5 to 
25 A), then the vicinal fluid is even more anomalous. In this case the vicinal water molecules are 
more ordered and are layered parallel to the surface, so that the fluid, on the microscale, is 
structured, inhomogeneous, anisotropic, relatively immobile and can actually support a shearing 
force at equilibrium. In this range A\ also depends on the alignment of the clay platelets and 
consequently to capture swelling one must replace 0, by the strain tensor Es. 
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For simplicity, assume that interfaces contain no thermodynamic properties, entropy fluxes are 
solely due to heat fluxes, solid and fluid are non-polar, non-reacting phases, all external sources 
are negligible, the microscopic solid phase is incompressible, and the adsorbed water at the me- 
soscale is non-viscous. In addition, assume a priori the validity of the principle of local thermal 
equilibrium between adsorbed water and clay minerals (r, = 7] = T) so that one can locally assign 
a single temperature to both phases and consequently adopt a one-energy two-scale model in the 
sense of Quintard and Whitaker [65]. 

By postulating constitutive dependence of the free energies in the form As =AS(T,ES) and 
Ai=Ai(T,ft,<h) and using the Coleman and Noll method of exploiting the entropy inequality 
[21], Murad and Cushman [56,57] obtained the following constitutive equations for the entropies 
t]a and the stress tensors ta 

rla = ~'ÖT    a = 1's' 5£   « = U (2-1) 
4 = -*/, (2-2) 

where the tensors f; and t\ are defined by 

f. = P.M^,    t^MjKl,    p.*^ (2.4) 

with pa denoting the thermodynamic pressure of the a-phase. The pressure & of the compressible 
vicinal fluid has the classical definition 

For the incompressible clay platelets, ps is identified with a lagrange multiplier which arises from 
exploiting a modified entropy inequality formulation in the sense of Liu [49], obtained by adding 
the incompressible solid phase mass balance (treated as an internal constraint) to the original 
entropy inequality (see [55,56] for details). 

From (2.3), the difference between granular and swelling media is the physico-chemical stress 
component t\ (or />,) which arises because we postulated that A\ depends on </»,. To obtain a 
physical interpretation for this physico-chemical quantity we follow [56,57] and introduce the 
total particle stress tensor t and the particle thermodynamic pressure p 

t = (t>sts + <M,   P = <t>\P\ + &A- (2-6) 

If we multiply (2.2) and (2.3) by 0, and 4>„ respectively, and add them we obtain after using (2.6) 

t = -pi + f, + t,   t\ = Mj>J- (2-7) 
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The physical interpretation of (2.7) has been discussed in [56,57] who form an analogy with the 
results of Hassanizadeh and Gray [33] for non-swelling granular media. If we consider a fixed 
solid strain Es and then define the bulk phase (denoted by the subscript B) to be fluid whose 
properties are unaffected by the solid phase with absence of physico-chemical effects (as in the case 
of non-swelling granular media), then, by definition, the free energy of a bulk fluid AB does not 
change with the proximity of the solid and therefore is independent of <£,. In this case from (2.4), t[ 
and pt are zero for a granular medium and f* remains unaltered, as it only depends on the fixed 
solid strain £"s. Hence the reduced form of (2.7) for granular non-swelling media is 

'B = —p*I + 's    (f°r a non-swelling medium). (2.8) 

In classical soil mechanics the above result resembles in form Terzaghi's effective stress principle at 
the mesoscale for non-swelling media withps and te

s normally referred to as pore pressure (or bulk 
phase pressure) and effective stress tensor, respectively. In classical stress analysis of non-swelling 
media,PB has a classical pore pressure definition, analogous top in (2.6), except that it is equal to 
both the thermodynamic fluid and solid pressures, (see e.g. [12,33]), i.e. 

PB = (frsPs + 4>\P\ =P\ —Ps,    (for a non-swelling medium). (2.9) 

The effective stress tensor, te
s, measures stresses induced by mineral to mineral contact and 

primarily controls the deformation of non-swelling systems such as sands, silts, and low and 
medium plastic clays such as kaolinite or illite. The modified effective stress principle (2.7) for 
swelling media has the additional term, t[, which is the stress due to the change in the free energy 
of the vicinal fluid with volume fraction. In contrast with coarse-grained materials where stress 
mechanisms are primarily controlled by the contact stresses te

s, the deformation of smectitic clays 
such as montmorillonite is governed by the additional stress t\. Clearly this additional term ac- 
counts for the solid-fluid physico-chemical interactions and can be viewed as a stress structural 
component arising from surface hydration. Whence, as in Murad and Cushman [56,57], we 
henceforth call t\ and pt the hydration stress tensor and hydration pressure, respectively. Note that 
the modified Terzaghi's principle (2.7) shows an explicit decoupling between elastic and hydration 
stresses. Other thermodynamic approaches, such as the one proposed by Biot [13], considered the 
vicinal fluid as part of the solid phase. Consequently the bonding energy associated with the 
swelling pressure is somewhat obscure, as it is incorporated in the free energy of the "wetted solid 
phase". In our approach, physico-chemical effects appear explicitly decoupled from elastic stresses 
as they are taken into account by postulating the additional dependence of the adsorbed fluid free 
energy, on an internal variable (the intra-cluster volume fraction). This led to the modified Ter- 
zaghi's principle (2.7), which is consistent with some heuristic principle postulated by Hueckel 
[37], Lambe [46], Morgensten and Balasubramonian [54], Sridharan and Rao [71] to account for 
net attractive (^4)-repulsive (i?) forces between the clay particles (commonly denoted by (R-A)). 

2.2. One energy equation model 

Let va be the mass-average velocity of phase a and let Da/Dt denote the material time derivative 
following the a-phase satisfying 
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14+^ £=§+*■*■ ■-»•■■ (210) 

where v1]S = v, - vs denotes the velocity relative to the solid phase. Since we have assumed that the 
clay minerals and adsorbed water are at local thermal equilibrium there is no need to consider 
individual energy balances for each phase. Rather, an energy equation for the mixture as a whole 
is considered by summing up the energy balances for the individual phases. In terms of the 
Helmholtz free energy, Aa, the overall energy balance can be expressed as (see [33]) 

£^%T + *.wi«l£ + ^«Tlt - *«'«: rf*+ div(0A)" 2« = °' {2Al) 
o=l,s 

where A : B = tr(ABT) denotes the dassical inner product between tensors, da is the symmetric 
part of Vva, ha is the heat flux, and Qa is the net exchange of energy between phases. If we denote 
by Ja the exchange of momentum to phase a from the other phase, it satisfies the momentum 
balance 

0apa^-div(^ra)=ra,    a = l,s. (2-12) 

Conservation of momentum and energy for the mixture as a whole requires 

£ra = 0,    £öa = -£ra.va = -7Vv1)S. (2.13) 
a=l,s a=l,s a=l,s 

Recalling our constitutive assumptions A\ = A\(T, pu <&) and As = AS(T, Es), using (2.1),(2.4) and 
(2.5), by the chain rule, the expansions for D\A\/Dt and DSAS/Dt are 

DXAX DXT    </>!# APi ,   ,     A4>i (7 id) 
^■DT + ^'ä— -W + ^-DT' {    } 

^Ps^ + 4>M^-tt:ds = 0, (2-15) 

where the solid was assumed incompressible (D%pJDt = 0) and the relation DSES/Dt = Fs dsFs 

[29] was used. Since ps is constant, by adding the mass balances 
(fa/p^DiPi/Dt + Difa/Dt + <Mivvi = 0 and DrfJDt + &divvs = ° yields 

P\    Dt a=lA Dt   ' «Hs 

where the relation (2.10) and the constraint (/>, + <ps = 1 have been used. By adding (2.14) to 
(2.15), using the above result, and (2.10) we obtain 
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<x=l,s ot=l,s 

a=l,s 

= 4>\p* -jp- - #E^«div v«+(v* - #H« • y ^i- 
a=/,s 

Together with the constitutive Eqs. (2.2) and (2.3) for the stress tensors and the mass balance For 
the incompressible solid Dtfa/Dt = &divvs = (j>J : ds this gives 

oe=l,s a=l,s 

= -#E^ div Va+(^*+ * " Ps) i*+r*: ds+fe " ^ "D*1 

a=l,s 

= -AE^Z : rf« + ^ ~Ps + ^7: ds + *■: rfs + ^s ~p^~bT 
a=l,s 

= -E^«7: rfa+^(^>lP*/ : rfs+'*: ds+^s ~P{S}~D~t~ 
a=],s 

= E^«'a= <*«+(ft -#) -^ • 
<x=l,s 

Using the above expression and (2.13) in the energy balance (2.11) gives 

a=l,s 

where <P denotes the intrinsic dissipation function 

* = fa-A)^-(rI + (0lp.-/OV*,)-»u (2-17) 

Note from (2.9) that in the case of a non-swelling granular media, pi=ps and therefore the first 
term in the r.h.s. of (2.17) vanishes. In this case <P has only one contribution due to the Darcy 
velocity v]iS. 

2.3. Equilibrium 

At thermodynamic equilibrium {vitS,D,4>{/Dt,VT} vanish. Following [33], it is postulated that 
at equilibrium entropy is a maximum and entropy generation is a minimum. Application of these 
conditions to the entropy inequality yields at equilibrium (see [56] for details) 
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r, = fa-A*i)V*„ (2-18) 

Pi=Ps=P, (2-19) 

5>A = 0. (2.20) 
a=l,s 

Eq. (2.20) shows that the overall heat flux vanishes at equilibrium. Relation (2.19) states that at 
equilibrium, the thermodynamic pressures of the solid and adsorbed fluid phases are equal. Recall 
that this result reproduces (2.9) which is a result that has been extensively used for granular non- 
swelling media even away from equilibrium (see e.g. [33]). By combining (2.18) with (2.2) and 
(2.12) we obtain at equilibrium 

Ypi+p,V0, = O. (2-21) 

Note from (2.21) that the pressure gradient is counter-balanced by a gradient in the volume 
fraction. This implies that it is possible to have no flow even with a net pressure difference across 
the clay. Defining the chemical potential (molar Gibbs free energy) ft of the adsorbed water as 

fls^ + fl-1/,, (2.22) 

and using definitions (2.5),(2.1) and (2.4) for #, r\x and p* we have by the chain rule 

dft = d(^)+dAl = d(^)+^dp1-rlldT + ^d<j>l=±-(dpl+ptd<l>l)-rhdT        (2.23) 
\P\J \P\J     P\ P\ P\ 

which represents the Gibbs-Duhem relation for the vicinal liquid. Using (2.21) and recalling that 
dT = 0 at equilibrium we get 

d^j = 0 —> ft — constant. 

This is the well known result that at equilibrium the chemical potential is constant everywhere 
[18]. We make use of this to characterize a local reference bulk phase pressure ps- The reason for 
this characterization is because in Low's swelling pressure experiment of Fig. 1, the reference bulk 
phase pressure PB is defined in the domain occupied by the bulk water. Therefore, the general- 
ization of Low's equilibrium definition for 77 to the case where particles undergo non-equilibrium 
processes requires a pointwise definition for the reference pressurePB(X, t). We define the reference 
pressure of a virtual bulk water, constructed at instantaneous thermal and mechanical equilibrium 
with the adsorbed water such that their chemical potentials, densities and temperatures are equal. 
Setting dft = dT = 0 in (2.23) yields dpi =-ptd(j>}. Considering the volume fraction 
(j)* = e*/{\ - e*) defined in Low's relation (1.1) where hydration forces are absent, for 0, = $\ 
Ax(4>\) — AB, where AB denotes the free energy of the reference bulk fluid. Hence, integrating from 
(f>t to 4>\ and using the condition #(0,*) =PB gives 

PB = /»- rP*(s)ds. (2-24) 
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Hence, for given 0,,/* and $[, (2.24) can be used to characterize locally the reference bulk phase 
pressure/^ = />B(#,4>\,4>\)-In tnis approach, the differencepi -pn denotes a pressure excess due 
to the physico-chemical interaction between water and clay. In other words, if there is no physico- 
chemical interaction, the excess in adsorbed fluid pressure, p\-ps, would be zero and the 
properties of the water would be unaffected by the interaction with the solid phase, as in the case 
of a bulk fluid. Moreover, since p affects the total particle thermodynamic pressure, p, through 
(2.6), we are led to introduce an excess in total particle pressure/; relative to the bulk phasep^. We 
refer to this difference as an excess in pore pressure, (77B) (see [57]), 

nB=p-pß. (2-25) 

In analogy to the excess in fluid pressure, p\ - p*, the above definition reflects locally the excess in 
pore pressure due to the physico-chemical interaction between the adsorbed water and the min- 
erals. In other words, 77B would be zero if the properties of the water are not perturbed by the 
presence of the clay platelets. 

With the local reference bulk phase pressure/^ characterized by (2.24) we may now pursue a 
pointwise definition for the swelling pressure 77 away from equilibrium and also rewrite the 
modified Terzaghi's principle (2.7) in terms of pn rather than/?. For t and fB given in (2.7) and 
(2.8), define 77 as 

n(x,t)I = -(t-tB). (2.26) 

From (2.7), (2.8) and definition (2.25) the above r.h.s. reduces to p - Pn - <l>\<t>J>* or 
77B - 4>\(t>J>*- This shows that the swelling pressure is a scalar and also <j)\(j)j>* can be interpreted as 
the difference 77B - 77. To show that at equilibrium the above definition is consistent with Low's 
swelling pressure, recall that for a well ordered particle depicted in Fig. 1, fs = 0, fB = -p*I and 
t - -PI (P denotes the overburden pressure). Thus (2.26) reduces to the classical swelling pres- 
sure definition 77 = P -p*. Since 77 = 77B -p*4>\<t>s, in conjunction with (2.7) with (2.25) we also 
have 

t = -{p -p.h4>t)l +1\ .= -fa + 77B -p,(t>A)i + f, = -fa + n)i + te
s. (2.27) 

Eq. (2.27) is an alternative form of writing the mesoscopic modified effective stress principle 
(2.7) with p replaced by ps- In this case physico-chemical forces are dictated by the swelling 
pressure 77. This alternative way of expressing the modified Terzaghi's principle resembles in form 
some heuristic modified effective stress principles for clays discussed in Lambe [46] or Shridaran 
and Rao [71]. Historically, physico-chemical forces have heuristically been modeled at the mac- 
roscale with an additional term in Terzaghi's principle which measures the effect of net repulsive 
(RI) and attractive (AI) forces between particles. This stress is commonly denoted by (7? - A)I (see 
[46,71]). We have 

t = -pBI + ft + (R-A)I. (2.28) 

Eq. (2.27) provides a rigorous derivation of the above heuristic modified Terzaghi's principle. 
When comparing (2.27) with (2.28) we have R - A = -77, which shows that the net attractive- 
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repulsive intra particles forces arising from hydration stresses are governed by the swelling 
pressure. This clarifies some controversial aspects in stress analysis in cohesive soils. 

3. Near equilibrium 

We begin by presenting the near equilibrium results of Murad and Cushman [56] in the range of 
moderate moisture content. These results were derived by linearizing the entropy inequality about 
equilibrium. In particular, when linearizing about {v,,s,Ds (/>,/£>;, VT} the following results were 
obtained 

M\ -Pi)V</>, + T\ = -R\vx„ (3.1) 

X>A = -*Tv;r, (3.3) 

where R\,KT and fit are positive definite material coefficients. Eq. (3.3) is the classical Fourier's 
law of heat conduction for the the overall heat flux. If the medium is isotropic, KT — KTI, where 
KT is the thermal conductivity of the mixture. Eq. (3.1) leads to a modified form of Darcy's law 
for the vicinal fluid. Denoting K\ = </>f/?f' the mesoscopic permeability tensor of the clay particles 
(recall that R\ is positive definite), using (2.2) and (3.1) in (2.12) and neglecting inertial effects we 
obtain the mesoscopic Darcy's law for the adsorbed water 

M^-ITKVfl+AVß). (3-4) 

The first term on the r.h.s. of (3.4) is the driving force for the traditional Darcy's law. The last 
term shows that due to the hydrophilic attraction between the adsorbed water and the minerals, 
the vicinal fluid tends to flow from regions of high volume fraction to regions of low volume 
fraction. Note from (3.4) and (2.12) that with VT" = 0, the driving force for vicinal fluid flow is the 
gradient of the chemical potential which consists of the same form postulated by Biot [13]. 

Eq. (3.2) tells us that near equilibrium, the thermodynamic pressure of the adsorbed fluid and 
solid phases are not necessarily equal. The coefficient n„ may be thought of as a relaxation factor 
which among other effects, accounts for the re-ordering of the adsorbed water, i.e. the redistri- 
bution of the fluid molecules over the interlamelllar spaces. Flow towards equilibrium is char- 
acterized by the fluid thermorelaxation time which depends on the size of the pores. For bulk 
fluids in macropores the relaxation time is usually much smaller than the macroscopic flow time 
[17]. It follows that for a granular medium, n„ « 0, since there is very little re-ordering of the bulk 
liquid phase. On the other hand, the combination of physico-chemical forces and narrow pores 
increases the relaxation time of the vicinal fluid to the same order of the macroscopic flow con- 
sequently leading to a natural relaxation viscoelastic constitutive behavior. The evaluation of the 
coefficient fit requires experimental study, and most likely it varies depending on the composition 
and the interaction of the vicinal fluid and solid minerals. In Murad and Cushman [57], nt was 
identified with the.excess in the volumetric viscosity of the thin film relative to the bulk phase. 
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Using (3.2),(2.24) and the second definition in (2.6) in (2.25), the near equilibrium relation for 
JIB is 

JIB = P - PB = <f>sPs + 4>\Pi-Pn = 4>s(Ps-P\)+Pi-P*=       p*{s)ds- (f>sn, -jr±.        (3.5) 

In addition, we have for the swelling pressure 

n = nB-ptfafc = /   p*(s)ds-p.<h<i>,-<i>tii,-jr-. 

Using (3.2) and (3.5) in the modified Terzaghi's principle (2.7) gives near equilibrium 

( A01 \ 
t - fs - p.<M,J = -PI = (-pi + <t>s(pi -ps))I =l-pi + fi.fa—U. 

(3.6) 

(3.7) 

Note that even though a priori the solid is considered to be elastic, the last term in the r.h.s. of 
(3.7) shows a viscoelastic behavior for the volumetric stresses. 

Finally, we derive a near-equilibrium relation from the intrinsic dissipation function by using 
(3.1),(3.2) in definition (2.17) to obtain 

* = M.(^)2+*,h/, (3-8) 

where | • | denotes the Euclidean norm and R\ = R\I for an isotropic medium. 

4. Two-scale linear thermomechanical model 

The two-scale infinitesimal thermomechanical model for the clay particles is obtained following 
the standard linearization procedure [29]. Consider that particles are initially in a homogeneous, 
equilibrium and isotropic state and assume small deformations and small deviations in temper- 
ature and adsorbed fluid density from their reference values. Expand Ax (a = 1, s) in a Taylor series 
about equilibrium and retain quadratic terms in Aa and linear terms in the set of governing 
equations. Assume As is an isotropic function of Es, depending only on its invariants to fulfill the 
usual_objectivity requirements [29]. At the initial equilibrium state denote T — T,px — p,, E% = 0, 
4>x = 0, and </>s = <j)s (<j)s = l- </>,) and also denote {Aa>rja,px) the values of {Aa,%,pi} in the 
reference state. For simplicity, assume initially a well ordered parallel platelet arrangement such 
that the reference configuration is free of effective stresses in the solid phase and consider that the 
only non-zero stresses in the reference configuration are due to hydration stresses. Let 
{p^KuK1,~fi*} be the values of {pt,KuK

T,fit} at the reference configuration. Further let the in- 
finitesimal strain tensor be given as 

£s = Vs«s, (4.1) 
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where VS
KS = 1/2(V«S + VaJ), with «s denoting the displacement of the mesoscale solid phase. 

Let {ps, As} denote the pair of Lame coefficients of the platelet matrix and let <xa and Ca denote the 
coefficients of thermal expansion and the constant volume specific heat of the a-phase defined as 
follows 

r-Tdrii _^
8J

7S Q = T 
P)><t>i 

607 
<xs =• 

8tr£s 

trrf      ' P\ Mr PI.^I. 

where dT = T -T. Additionally let K0 denote the bulk modulus for hydration stresses, defined as 
the coefficient of proportionality between pt and <f>x and also introduce the physico-chemical 
coefficient of thermal expansion <x]s in the sense of Campanella and Mitchell [19] to account for 
changes in volume resulting from a temperature induced change in physico-chemical forces. 
Within the current framework, these new physico-chemical coefficients are defined as 

PM>* P\fir 

Consider the relation p, = px{6T,p[,4>x) (obtained by inverting the equation of state 
PI=P\(6T,P\,<I>I) and assume that induced changes in ph due to pi and p* are small compared to 
those induced by changes in 9T (this weak dependence of p, on pt due to physico-chemical in- 
teraction was experimentally verified by Low [52] who observed that changes in p, due to the 
proximity of the solid are negligible compared to the other properties). Under this assumption the 
fluid compressibility due to mechanical and physico-chemical perturbations is neglected and pi is 
now identified with a Lagrange multiplier rather than thermodynamically defined from (2.5) (see 
[56,57]). The linearized version of p, = p|(0r) 1S 

P\-P\ = -P\*\9T- (4.2) 

Postulate now the quadratic expansions 

ps<Ms = PÄÄ - PMA + y (tr£s)
2 + listrEl - (3AS + 2p>str2?A - ^i^,      (4.3) 

p,4 = pxAx - pxt\x6T +pt(<j)x - 4>\) + VT(0I 
_ <M2 ~ -=-^(01 - <t>\)dT - -=s-0j- 20, 0. 

m 
IT 

(4.4) 

Together with (2.4) this gives 

tl = (Astr£s - Ksas6T)I + 2ps£s, 

/>.=/>*+=-(<Pi - <f>\) - -=-0r, 

(4.5) 

(4.6) 
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where Ks = 3As + 2/xs is the solid matrix bulk modulus. Using (4.3) and (4.4) in (2.1), gives the 
linearized entropy relations 

r,s = rjs + ^eT + ^trEs, (4.7) 

,, = ^ + §0^^(0,-0,)- (4-8) 

Eq. (4.5) is the classical linearJhermoelastic_constitutive equation for the effective stresses. 
Defining K[s = f*K0 + ä</>S(0S - 4>\) and <x{s = </>sa,s^0/^, by linearizing t[ = fcfaj we have 
from (4.6) 

=MAi=(p*<f>A+^(h-h)-<KOTy, (4-9) 

By neglecting all inertial and convective effects, using (4.2), the linearized mass balances of the 
incompressible solid and adsorbed fluid are 

|^-0,div^ = O, 
& dt dt (4.10) 

~*,<X,"F +  8/  +0>dlVV'=O- 

After adding the above equations and rewriting the result in terms of the Darcy velocity qv = 0jV|iS 

we have 

-T    9ör ..   9«s -0i«i -^- + divf, + div — = 0. 

Let hT = X)«=»,s 0A be tne overa11 neat flux- Neglecting convective effects, using relations (4.7) 
and (4.8) and the mass balance (4.10) in the linearized energy (2.16) gives, 

divAr - « = -r£fe^ = -PCT^ - otfKo^ - 7*sasdiv S*    .. 
o=l,s 

= -pCr^-T(0sals/:o+^as)div^, (4.11) 

where pCT = ps0sCs + ~p~\<fi\cu P = Ps + P\- The last two terms of the rhs- of (4-11) measure, 
respectively, the mechanical work of hydrätion and effective stresses. 

4.1. Linearized thermoviscoelastic governing equations 

In the absence of inertial and convective effects, with # given as in (3.8), in terms of the un- 
knowns {us,qx, fs,<j)\,p*,p\, t,6T,hT} our mesoscopic linearized governing equations are 
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Mass of the solid phase. 

90,    -r ..   dus 

9*     ^s       dt 

Total mass. 

-jd6T     ..       ■   .. 9«s -<xi0, —+ div0, + drv —= 0. 

Total momentum. 

divf = 0. 

Modified Terzaghi's effective principle. 

t = -plI + fs+Ui<t>J>*+~$Ji*-öf)I- 

Linearized effective stress constitutive relation. 

fs = (As div«s - asKs6T)l + 2/is Vs«s. 

Linearized hydration stress constitutive relation. 

MJ>* =äM + S(4>, - ft) - «JAM. 

Modified Darcy's law for the adsorbed water. 

f, = -?i(VA+RV0,). (4-1 

Energy equation for the mixture. 

divAr + pCr^ = -7a.div^+tf. ' -(4,1 

Fourier's law of heat conduction. 

 I* 
hj = —Ä' V0J", 

where a, = as#s + ais</>s£0 = «A4 a{sK,'s. The above two-scale linearized system governs partk 
swelling when physico-chemical forces are primarily due to hydration stresses. Next we establi 
the coupling between this system and bulk phase governing equations to obtain the mesoscop 
particle-bulk phase coupled system. For simplicity we henceforth adopt a partially decoupli 
formulation in the sense of Bai and Abousleiman [7] wherein the dissipation function and m 
chanical work (due to effective and hydration stresses) in the r.h.s. of (4.13) are negligible. 
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5. Mesoscopic thermomechanical model for clay particles and bulk water 

Let ßi and ßf denote the clay particle and bulk water domains respectively and let T represent 
the interface between them. The above two-scale linearized equations govern the swelling of the 
particles in ßi. In addition, let ßf be occupied by bulk phase water and denote by m the bulk water 
viscosity and the other corresponding bulk water properties by the subscript f (to distinguish from 
the subscript B used for the referencejbulk fluid in ß,). Assume initially the bulk water is at 
equilibrium at a constant temperature 2V Neglect fluid compressibility due to mechanical effects 
by assuming pf = pf(0f), with 0f = T{ - 7>. Further, neglect convective effects, source terms and 
mechanical work and dissipation in the energy equation. By linearizing the mass balance, Stokes 
equations, energy balance, Fourier's law of heat conduction and the relation pf = pf(0f) the bulk 
water governing equations are 

-A + pfdivvf = 0, 

divff = 0, 
tf = -p(I + 2pfV

svf    in ßf, 
80f divAf = -pfCf —, 

Af = -KT
{ V0f, 

Pf - Pf = ~Pf«f0f • 

5.1. Boundary conditions 

The above system is supplemented by boundary conditions on the particle bulk-water interface 
r. Continuity of mass, heat flux, and the normal component of the stress tensor on r lead to 

hTn = h(-n     on T, 

tn = tfn, 

where n is the unit normal exterior to ßi. Consider now Dirichlet boundary conditions for the 
hydrodynamical problem and follow Murad et al. [55,56] who postulated continuity of the 
variable whose gradient is the driving force for fluid flow. According to Darcy's law (3.4) and 
(2.23), the driving force is the chemical potential (for fixed T). Hence as in [55,56], postulate 

p, = /if    on r (5A) 

where as in (2.22), pf = A\ + pjxpt. The above boundary condition can be used to quantify the 
discontinuity in the liquid pressure (# -/*) on T. By the same arguments leading to (2.24), after 
linearizing, we can rewrite (5.1) as: 
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r4>\ r<t>\ _          _ 
P\-Pi= /    P*(s)ds=       Ä(s)ds -P* (</>i- 4>\) = HB- pM\-<t>\)     onr> (5-2) 

J<t>\ J<t>\ 

where 77B is the equilibrium value of the excess in pore pressure 77B, obtained by setting #, = 0 in 
(3.5). Hence, due to the presence of the hydration pressure/?*, we observe a discontinuity between 
p\ and/7f on the interface. Further using (2.24), the above boundary condition can be rewritten as: 

PB=P(     on r 

which in contrast to (5.2) shows continuity in the reference bulk fluid pressure. Note that the 
classical boundary condition between a granular non-swelling medium and a free bulk fluid 
(pi = pr  on r) can be recovered by setting /J* = 0 in (5.2). 

In what follows we also discuss the general case where the particle-bulk phase interfaces may 
exhibit resistance to fluid flow and heat transfer. This leads to "slip" boundary conditions for 
pressure and temperature (see e.g. [66]), where discontinuity in temperature and reference pressure 
on the boundary may arise due to an interfacial barrier resistance accounting for the local vari- 
ations in both thermal and hydraulic conductivities near the particle-bulk phase interface. In the 
analysis that follows we consider the classical case where the interfacial resistance is proportional 
to the difference in the corresponding potential. This leads to the following first-order "slip" 
boundary conditions 

hT  n = öT(0T - Öf)     on T, ^ 3^ 
qx ■ n = ö'pifa - nf) = öP(pß - p()     on T, 

where öT, S'p and SP denote the slip coefficients for heat transfer and fluid flow. 

5.2. Alternative mesoscopic formulation 

Following Murad and Cushman [57] an alternative way of formulating our two-scale HMT 
model is to rewrite it in terms of the pair of auxiliary variables {pn,II} replacing {#,/?,} in the set 
of primary unknowns. In analogy to (5.2), by linearizing (2.24) we find 

/■** —      _ — 

PB-P\ = -   /       P*(s)ds = -nB +A(<£I - <r\)- (5.4) 

Using this result in (4.12) we can rewrite Darcy's law in terms of a reference pressure gradient as 
follows: 

qx = -Zi(V# +py^) = -KiVpB. 

Further, if we define the initial equilibrium swelling pressure 77 = 77B — facfrsP*, by linearizing (3.6) 
together with (4.9) we get: 
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n = n - ^ (0, - fc) - <U ?£+avcor 

with £ls = K[& +pt and a* = x[sKjKh. The above results together with the modified Terzaghi 
principle (2.27) and boundary condition (5.3) lead to the following alternative mesoscopic for- 
mulation in terms of the primary unknowns {HS, qx, fs, (f>u n,ps,t, 9T, hT) and {ff, vf ,pf, 0f, Äf} 

fr = -pil + 2ß(V
sV{     in ßf, 

divff = 0    in ßf, 

Äf = -KjVOf    in ßf, 

9öf     .   „ 
divAf = -PfCf —     in ßf, 

-■Of—- + divvf = 0     in ßf, of 

divf = 0     in ßb 

t = -pel + fs-III     in ßi, 

te
s = (Asdivws - asKsdT)I + 2/*SV

S
IIS     in ß, 

n = n-^(<i>i-^)-'$sfi^ + ^KlseT   inß,, 

-  deT , .. a«s    .  _ 
0,ai — = div^r, + div —     m ßi, 

-^ - 0sdiv -x2 = 0     in ßi, 

qy = -KiVpn     in ßb 

Är = -KTVeT     in ßb 

Ö0r      .    _ 
divAr = —pCT-£-     in ßi, 

qrn=(v{-^yn     onr, 

fn = t(it     on T, 

Ar • « = Af • H     on r,      • 

?r« = 5/»(pB-pf)     onT, 

hTn = ÖT(6T - Öf)     on F. 

0f = 0    in ßf, t = 0, 

0! = <j>x    in ßi, f = 0, 
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6T = 0     in ß,, t = 0, 

div«s = 0     in Q\,t = 0. 

Henceforth, to simplify the notation the overbars used to denote the initial equilibrium values of 
the coefficients {KhK

r,Kj,nt} have been dropped. Note that after solving for/?B and <£,, within 
the alternative mesoscopic formulation # can be computed from (5.4) using a post-processing 
approach. 

6. Macroscopic dual porosity model for heat transfer and fluid flow 

We upscale to the macroscale using the homogenization procedure. In this framework our 
macroscopic swelling clay is idealized as a bounded domain ße with a mesoscale periodic struc- 
ture. Following the general framework of Sanchez-Palencia [67], the mesoscale characteristic 
length is denoted by / while the characteristic length-scale associated to the macroscopic region is 
denoted by L. Let the ratio e = l/L. Consider ß£ as the union of disjoint parallelepiped cells, Q, 
congruent to a standard Q which consists of the union of several clay particles, Q\, completely 
surrounded by a connected bulk water domain Q{. Let the systems of bulk phase water and clay 
particles in ß£ be denoted by ß£ and ß[, respectively. Our starting point, e = 1, corresponds to our 
mesoscopic model. The e-model in ß3 consists of properly scaled two-scale equations on a lattice 
of copies sQ. The basic problem is to investigate the asymptotics of the solution as £ -> 0. The 
picture corresponding to the limiting model is depicted in Fig. 3, where a mesoscopic cell, Q, is 
assigned to each point JC of the macroscopic domain. As we shall illustrate next, this leads to a 
macroscopic model of dual porosity type wherein the swelling clay soil is represented as two 
distinct structures coexisting at each macroscopic point: one representing the global macroscopic 
transport equations and the other representing the local cell problems at the mesoscale. In this 
picture the macroscopic Darcy velocity is that of the bulk water alone, and fluid storage occurs in 
the system of clay particles. This technique has been successfully used to model naturally fractured 
reservoirs in which the system of fractures play the role of the global system (where the macro- 
scopic flow takes place) and the matrix blocks behave as the analogue of the clay particles (see 
[27]). The main feature of dual porosity approaches is the accurate description of the interaction 

_n_ 

Fig. 3. Macroscopic picture of a dual porosity model with microstructure. 
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between the two structures. Within this framework the interaction between the two coexisting 
systems is manifested in a mass transfer function (also termed the secondary flux) which appears 
as a source term in the mass balance for the fracture flow distributed over the whole macroscopic 
domain, (see e.g. [3,4,27]). Here we pursue the derivation of a general microstructural dual po- 
rosity model for swelling media which incorporate distributed sources of mass, momentum and 
energy. In what follows we consider a totally fissured medium in the sense of Douglas and Ar- 
bogast [27] or Showalter [70] wherein particles are completely isolated from each other by the bulk 
phase fluid with no direct mass, energy and momentum transfer from particle to particle. 

The formal homogenization process is accomplished by considering every property of the al- 
ternative mesoscopic formulation of Section 5.2 to be of the form/(x,.y) (where x and y denote 
the macroscopic and mesoscopic coordinates, respectively, with y = e~xx) and then postulating 
two-scale asymptotic expansions for the set «* of the unknowns {ui,qx,4>x,Pü,t,hT,dT,fs,11} and 
{t{, Vf,pt, 9{, h[} in terms of the perturbation parameter e 

«■ = «° + «a1 + irV + • • ■ (6-1) 

with the coefficients «', ß-periodic in y. The coefficients of the two-scale coupled model must be 
properly scaled in order to describe the physics correctly. From the standard homogenization 
procedure of the Stokes problem, the bulk water viscosity coefficient /*f is rescaled by e2 [67]. In 
addition, to control the secondary flux with a fixed volume as e -> 0 it is also necessary to scale the 
hydraulic conductivity of the clay particles K{. Following Arbogast and co-workers [4,27] this is 
done by the scaling law K{ = K^ (see also [56]). This scaling has the effect of making the particles 
progressively less permeable as e -»0 and consequently prevents the degeneration of the sec- 
ondary flux. In addition, recall that intuitively it is not evident that heat conduction mechanisms 
are the same as those governing fluid flow. Hence, the same scaling law for K{ may not necessarily 
hold for Kn. Nevertheless, experimental observations show that even though particle thermal 
conductivity is higher than the bulk phase, particle heat capacity is significantly more pronounced. 
This suggests that particle thermal diffusivity aD = pKT/CT is smaller than that of the bulk water 
and therefore particles have strong potential to act as a storage sites of thermal energy (the dif- 
ference is even more pronounced between particles and saturated bulk vapor). Hence, in analogy 
to the hydrodynamical problem we begin by adopting the same scaling law KTe = K1^. Under 
this assumption we consider that heat transfer at the macroscale takes place primarily through the 
global system and the thermal energy storage takes place in the local mesoscopic system of clay 
particles. 

In order to quantify how particles respond to both thermal and hydrodynamic perturbations in 
the bulk phase we consider the Biot numbers for heat transfer and fluid flow BiT = STl/K

T and 
BiP = 5Pl/K\. Physically these dimensionless quantities measure the ratio between particle and 
interfacial resistances (thermal and hydraulic) \/K and I/SI. Clay particles with high conduc- 
tivities are characterized by low Biot numbers. In this range the variation of the potentials for 
fluid flow and heat transfer over the particle is often neglected and surface resistance dominates. 
On the other hand, Bi —> oo corresponds to the absence of interface resistance and therefore 
continuity of the potentials for fluid flow and heat transfer on the particle-bulk phase interface is 
valid. In what follows we begin by assuming the scaling laws Bie

T = eBiT and Bip = eBiP and 
subsequently we analyze the influence of this scaling on the form os the macroscopic governing 



M.A. Murad, J.H. Cushman 1 International journal of Engineering Science 38 (2000) 517-564 541 

equations. This analysis was carried out by Auriault [5] within the framework of homogenization 
of heat transfer in rigid composites. We pursue a similar analysis in order to reproduce lumped- 
parameter models in terms of different scalings of the Biot number. 

Insert the expansions (6.1) into the set of mesoscopic governing equations with the differential 
operator 8/8x replaced by 8/8* + e_,8/8r After a formal matching of the powers of e, we obtain 
successive cell problems. For bulk water we get 

A = -PP, (6.2) 

t\ = -pll+ 2^1 (6.3) 

div° = -Vyp°{ = vye°{ = o, (6.4) 

div,«? + div| =0, (6.5) 

div,v° = div^ = 0, (6.6) 

txt-z± = d\\xv1 + diVyVl
(, (6.7) 

A? = -^(V^ + V^), (6.8) 

80° 
Pt Q -Qf+div* h°r + <H h\ = °» (6.9) 

and for clay particles 

IX^yyUl  +  (As  + Hs)VydWyU°s   =  0, (6.10) 

div° = 0, (6.11) 

div^ + div,*1 =0, (6.12) 

l° = -(p£ + JI°)Z + l?, (6.13) 

i = -tä + nl)i + t\ (6.14) 

tf = (A,(div,«S + divyul) - 0LSKS6PT)I + 2/is(V>° + V#), (6.15) 

i7o=]7_|i(</)o_^)_^^ + a^is0o) (6.16) 

18^-diveW" + div^ (6.17) 

T     d6T       A-        1   ,   A-      
8"s   ,   A-      

d"l 01«! -gf = dlVy ql  + dlV, -£ + dlVy -^, (6.18) 

h°T = q°,=0, (6.19) 

ql = -Ktfyfl (6.20) 

hj   =     K.        \yUj-, (6.21) 

30° 
?Cr-g^ + divX = 0, (6.22) 
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along with the boundary conditions 

(v»-^]-« = 0     onT, (6.23) 

«I •"= ('!-§)•"   onr- (6,24) 

(2/zsV>° + AsdivyK°/)/i = 0    onr, (6.25) 

(f° - *> = 0     on r, (6-26) 

(f'-f> = 0    onT, (6.27) 

A° -n = 0     onT, (6.28) 

h\n = h\n    onT, (6.29) 

f,1-* = «p(p£-rf)     onT, (6.30) 

tiT- n = <5r(0° - 6»)     onT, (6.31) 

and initial conditions 

^ = 0,,     infl,, t = 0, (6.32) 

divxii° = dWyiil =0,     in Qh t = 0,                                                                               (6.33) 

0° = 0     in Qh t = 0, (6.34) 

0° = 0    in ßf, f = 0. (6.35) 

Next we formally collect our homogenized results. We remark that in postulating the boundary 
conditions, we have assumed that the displacement of the interface r is small compared to the 
mesoscopic length of the periodic cell / so that boundary conditions are applied on the initial 
(undeformed) position of the interface. The extension of this analysis to allow for higher order 
interfacial displacement (for instance of the same order of the macroscopic displacement) can be 
obtained by adopting the Lagrangian framework proposed by Lee and Mei [47]. 

Recall that since p\ was replaced by p% within this alternative formulation, p^ stills needs to 
evaluated by collecting O(e0) in the post processing (5.4) as follows 

rf=*£+EB-Ä(tf-ä). (6-36) 

Non-oscillating variables. From (6.4) we have/?? =/#(*,*) and 0° = 0°(x,O- Also note that «° 
satisfies the Neumann problem given by (6.10) and (6.25), whose solution is u°s = u°s(x,t). This 
shows that the leading order neighboring platelets move together as a rigid body in each cell. 

Darcy's law for the bulk water flow. The macroscopic Darcy's law for the bulk water flow 
relative to the solid phase follows from the well known upscaling of the Stokes problem 
(6.2M6.6), together with boundary condition (6.23) (see e.g. [67]). Introduce the mean value 
operator 
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JQ 

and for each macroscopic point, x, define the macroscopic volume fractions of the particles and 
bulk phase by na = |ß«|/Jß|,a = l,f, and the averaged bulk phase Darcy velocity relative to the 
solid phase by qf° = v{°- n{du°Jdt. We then have 

q{° = -KFV& 

which is the classical Darcy' s law governing the macroscopic bulk water movement with KF 

denoting the permeability coefficient. For a macroscopic isotropic medium, KF = KFI. 
Fourier's law for bulk water. By combining (6.6) and (6.8) together with the boundary condition 

(6.28), 6\ satisfies the following Neumann problem 

Ayydl
{ = 0    in Öf, 

(Vx0? + Vy6l) ■ n = 0    on T. 

By linearity we have 

0}(*,* 0 = *O0 • V,0?(*, 0 + 0?(x, 0, (6-37) 

where ^ is a auxiliary ^-periodical vector valued function (determined up to an additive constant) 
whose components ^ satisfy the canonical cell problem 

A^ = 0     in ft (63g) 

V^f« = -ejit — -rtj     on T,    y = 1,2,3, 

where ty = Y^-^fj witn ej denoting the unit vector in the direction of the>axis. Using (6.37) in 
(6.8) we get after averaging 

Af° = -JTjVflf,    with Kl = Ifir1 / Kj(I + V» dfif, (6.39) 
Jo.! 

which is the macroscopic Fourier's law for the bulk water with K], = Kjl for an isotropic me- 
dium. 

Overall momentum balance. To derive the overall momentum balance we apply the mean value 
operator to (6.12)-(6.14), use the boundary condition (6.27) together with (6.5), (6.2) to obtain 
(recall that n was chosen outward to Q\) 

divxf° = div^° - V,^0 - V,77° = -Ifip1 / div'ndfi, = -Ifip1 / fW 

= -ler1 [ t\n&r=\Q\-x I div^jdfif = ier1 / v^dßf = «fv^, 
Jr JQf JQt 
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where the divergence theorem and periodicity assumptions have also been: used. Whence 

div,ff-V^°-Vj7Ml-"1)^ = 0. (6.40) 

We now rewrite (6.40) in a more convenient form. To this end integrate (6.17) and use the initial 
conditions (6.32) and (6.33) to get </>° - 0, - <j>s(di\xu°s + div,«>)- Using this relation in (6.16) 
yields: 

no _li= _Kls(diVjc„° + div,«,1) - ßh(dWx ?S + div„ ^j + d;sKls9°T (6.41) 

with /ils = <^/v Since «° depends only on (x, /), Eqs. (6.13H6-16) together with (6.41) suggest the 
following decompositions 

tf = a0(x,t)+al(x,y,t), 

n° = n0{x,t) + nl{x,y,t), 

P = t0(x,t) + ti(x,y,t)1 ,643. 
t° = t*0{x,t) + t\(x,y,t), 

with 

<r0(x, t) = lsdivxu°sI + 2fisV>l (ö-44) 

ai(x,yj) = (lsdivX-zsKs6°T)I + 2»sV
s

yul (6.45) 

_ 011° 
i7o(*,r) = 77-A:lsdiv;c«°-/ilsdivJC-^

L, (6.46) 

Q„l 
n^y,t) = -Khdivyu\ - /xlsdiv, -£ + 0^0°, (6.47) 

t0(x,t) = <T0-(p°(+n0)I, (6-48) 

l, (x^,0 = ff,-(pg+ !!,)/, (6-49) 

t*0{x,t) = -n0I + <ro, (6-50) 

r;(x^,0 = -(pS + WiV + »i» (6-51) 
.0 - ~o     J> (6.52) 

Using (6.42) in (6.11) gives diVi = 0. Further, using the above decompositions in (6.40) we 
get: 

div,5ö - V,i7o - (1 - m)Vjjf   =    -div^fff + VJU + Vxp? 
=    -div, £f + V,i7, + VXÄ° + "1 V,rf, 
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which when combined with (6.49) gives 

div* So - VXT1Q - Vxp® = -divx t\. (6.53) 

The above result is an alternative form of (6.40). The decompositions allow us to rewrite the 
macroscopic overall momentum balance with the l.h.s. of (6.53) containing only global variables 
(functions of (x, t)). The r.h.s. represents a distributed source/sink of momentum transfer from 
the mesoscopic system to the global one. 

Overall mass balance. We now derive the overall macroscopic mass balance. By averaging (6.7) 
and (6.18) using the boundary condition (6.24) along with the divergence theorem and the peri- 
odicity assumption gives 

-af*f^+div,v° = -\Q\-1 j div^döf = |öl~l J^ ■ ndr = \Q\~X jf (f J + |£)   ndr 

= tor1 / (div^i+<üv, |£) da = -(i - iifjdiv, ^7+M.^p 

In terms of the bulk water Darcy velocity, q{°, the above result can be rewritten as: 

-or/if -£ + dwx -£ + div, q{° = </>,«, —. (6.54) 

Overall energy equation. Applying the same procedure to the energy balances (6.9) and (6.22) 
and using the boundary condition (6.29) gives 

PrQnt^ + div, Af° = -\Q\~l J d\vyh\dßf = \Q\~X J h\ ■ ndr = Ißl'1 J h\ ■ ndT 

= Ißl"1 J divyh\dQx = -7>CT-£-, (6.55) 

which is our macroscopic energy balance. 
Boundary and initial condition. Using (6.2) and the decomposition (6.43) and (6.51), boundary 

condition (6.26) can be rewritten as: 

-p°{n = t°n = (l* + f> = (t*0 - (p£ + jj,)/ + <r,)«     on J\ 

Together with (6.49) and (6.52) this yields 

txn = («7, - (pi + nx)I)n = -t*0n    on JT. (6.56) 

The above together with the boundary conditions (6.30) and (6.31), initial conditions (6.32) to 
(6.35) and the post processing (6.36) for/jf establishes our macroscopic microstructural model of 
dual porosity type. 
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6.1. Summary of the dual porosity model 

Let As = As«i, fxs = rt\fis,KLS = K^ni, nLS = nlsn\. The application ofthe formal homogenization 
procedure leads to the following dual porosity model: Find {«5,^0, #0,/?°,0?, £f°) Af°} functions 
of (x, t) and {pi, ti,u\,q\,a\,U\,0°,h\} functions of (x,y,t) such that 

div^ - vxn0 - Vxp°{ = F.(x, 0, 

a^ = Xsdivxu°sI + 2ns^ys, 

n0 = nxn - Kus di\x u°s - nLS div, -£, 

90?    J.    _0     ..    9n°     „,    . 
- «ffif -^ + div* qf° + div, -gi = Q* (x, t), 

qr° = -KFVxP°{, 

90° ~ 
ntpt Q -^- + div, Af ° = E, (x, t), 

Af° = -k£vx$  x e ßf,   t > 0, 

with 

'—®^/a"
de- *-^/^*- *-E/.£*     (657) 

and 

div,,fi =0, 

ri = -(pg + i7,)/ + «r,, 

ffl = (AsdivX - as£s0°/) + 2/i,V#, 
9«1 

ili(*,0 = -KisdivX - tts<K -^- + o4£i,0°, 

T set   r   .    ..  9»!   „,   , 
- 0i«i"g^- + «Hf,' + div, -£ = # (x,/), 

90° 
pCr-g^1+ div,,*J.='0, 

h\ = -KTVy6PT   y e Qh t > 0, 

with 

9«° 
i/{x,0 = -div;c-of 
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For t*Q given as in (6.50), the above is supplemented with the following boundary and initial 
conditions 

t\ti = —t*0n     on r, 

q\ • n = ÖPPI     on T, 

h\- n = <5r(0° - Ö?)     onT, 

divx«° = divX = 0,     in Qu t = 0, (6-58) 

0° = 0,     in ßh t = 0, 

0° = 0,     in ßf, t = 0. 

together with the post-processing for p^ 

rf=/£+nB-R(tf-ä). (6-59) 

We have obtained a homogenized microstructural dual porosity model wherein the macro- 
scopic mass, momentum and energy transport equations are coupled to a family of mesoscopic 
cell problems through distributed source/sink transfer functions ß„, F* and Et. For each point x in 
the macroscopic domain, there is a magnified or scaled local cell Q which represents the effect of 
microstructure near x (Fig. 3). The way the family of local cell problems affect the macroscopic 
global swelling medium is analogous to the approaches of Douglas and Arbogast [27] and Pes- 
zynska [60] for isothermal and non-isothermal flow in rigid media. The novelty is the appearance 
of the additional distributed source of momentum F». For rigid media («s = 0) our model reduces 
to the one proposed by Peszynska [60]. On the other hand there are basic conceptual differences 
between the microstructural models for rigid and swelling media. In the former the global medium 
is the fracture system while the local family of cells is the collection of matrix blocks. In the latter 
the global medium also incorporates the non-oscillatory part of the solid variables {ff0,^o,"s}- 
Also, for rigid media, the influence on the global medium on each local cell occurs only through 
the cell boundary T (see [27]). In our model the global medium also affects the clay particles 
system at the mesoscale throughout the clay particle domain via the distributed mass source term 
H(x t} 

Next, let As*=^+^is, 4 = Xs+KhS, and ot=oA + ^i,. In terms of {«»,/&0?} and 
{HJ,/?B,0°} the above system can be rewritten as 

8«° 
KJA««? + (4 + ^s)Vxdiv,K° + /iLsV^div, -£ - VxP°{ = F„ 

_afMf|L + div^_^FA^o = ß+) (6.60) 
ot or 

ciff 
p{ntCf^--K$k„dl=E.   xeQf,    t>0, 
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with 

F.(x,t) = -2/i.divx VjnJ - A,*'Vxdivy«' + V^0 - /xlsVx- div,«,1 + cc>Vx6T° 

and 

9«1 

M*«l + ft + fOV,divX - V^ + AsV,div, -^ - a,V,0° = 0, 

- a,0,-rf + div, -A - K^pl = -div, -=r± (x, 0, (6-61) 

8/' 
80° 

Finally, using the solid phase mass balance 0° - </>, = </>sdivK° in the post processing (6.36) gives 

rf =p0
h+7JB -pM\ ~ ?i) =^8+^3 -Ä08(divy«; + divX)- 

7. Reduced models 

We now exploit several consequences of the dual porosity model with microstructure. We begin 
by showing that application of the Green's function method reduces the microstructural system in 
seven variables (x,y,t) to a reduced system in (x,t) with fading memory. Subsequently we show 
how lumped-parameter models such as the one developed by Wilson and Aifantis [75] and Khaled 
et al. [45] can be recovered from the general microstructural model. 

7.1. Green's function method and memory effects 

Within the context of microstructural dual porosity models for flow in rigid fissured media, 
Arbogast [2] and Peszynska [59] have shown that application of the Green's function method 
reduces the dual porosity equations to a single integro-differential equation of Volterra type. Next 
we exploit this idea and illustrate how application of the same technique to the proposed dual 
porosity model for swelling media leads to integrodifferential governing equations. In particular 
we exploit a notable consequence of this procedure in providing a rational basis to rigorously 
explain some secondary consolidation stress constitutive equations of viscoelastic type which 
account for creep effects due to the delayed drainage of the adsorbed water in the secondary 
consolidation stage (see e.g. [22]). 

Green's functions (GFs) have been used in the solution of transient heat conduction equations 
for over a century. Carslaw and Jaeger [20] and Ozisik [58] present an introduction to the method 
for heat conduction problems and derive the pertinent Green's function by using a Laplace 
transform. Physically a GF(y,y,/) represents the temperature field at position y and time t due to 
an instantaneous point source of unit strength at position /. Recently Feng and Michaelides [30] 
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pointed out some drawbacks of the classical GFs formulation such as its dependence not only on 
the geometry of the solid, but also on the position of the source/. To overcome this difficulty they 
proposed a modified Green's function method (MGFs) which represents the temperature induced 
by a unit impulse 5(t - T) on the boundary of the solid at time t = %. The main difference is that 
the MGF's depend only on the geometry of the solid considered and not on the position of the 
source /. The MGFs technique has proved to be a powerful tool for deriving averaged properties 
of solids, such as averaged heat transfer. 

To illustrate the application of the MGFs method to the proposed dual porosity system, we 
consider the case of large Biot numbers {bT and bP —► oo) such that we may assume that the 
reference pressure and temperature are continuous on the interface F (ps = Pt and 6T — Of on T). 
Begin by considering the local cell heat equation (6.21),(6.22) and define the modified Green's 
function for temperature Ge(y, t) as the solution of (see [30]) 

pCT^-KT^Ge = 0    in 0i, 
dt 

Ge = S(t)     onJ\ (7.1) 

Ge = 0     in Qh t = 0, 

where S(t) denotes the Dirac measure at / = 0. Following the usual procedure we express (fy(y,t), 
the solution of the heat equation (6.21) and (6.22) with boundary and initial conditions in (6.58) 
(with ST —> oo), in terms of tf(x,t) and Ge(y,t). To this end define the Laplace transform 

/•oo 

Lf(t)=        exp(-Ä)/(/)d/ = ?(5). 
Jo 

In Laplace space, the heat equations for 6T° and Ge° are 

KTA)y9^0 = pCrSe^0    infl,        Öp° = 0f
o     on r 

KTAyyGg = pCrSGe     in Q\,        G~B = 1     on T. 

We then have by linearity 

d?(x,y,Si) = Go(y,S)Öf0{x,S). (7.2) 

Hence, by inverting the Laplace transform we get the convolution relation 

&T(x,y, t) = Ge *$= f  Gg(y, t - T)0?(JC, T) dr. (7.3) 
Jo 

Averaging this result and combining it with the mass and energy balances (6.54) and (6.55) and 
Darcy's and Fourier's laws for the bulk water we find 
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90?    J.    6H°     v       0-3-    /—     361? \ .... 
-oc{nf-^ + divx-^--K{Axxp

0
f = 0,ai(C?e  *-g^J, (7-4) 

pf«fQ^-^A^ = -pCr^ *?£), (7.5) 

where the convolution product property 8(/i  */2)/3f =f\(0)f2{t) + (8/i/9** /;>) has been used 
together with the initial condition (6.35). 

We now pursue the derivation of analogous convolution relations for the pair {«],/$}. Using 
(7.2), in the Laplace space, problem (6.61) for u\ and/?g, supplemented by the initial conditions 
together with first and second boundary conditions in (6.58) (with bP -» oo) is given by: 

\i%LyyU%
X   +   (A*   +   Ms   + Sfih) VydiVy ft    ~   Vy^ =   U.VyO^   =   0. of0 VyC^ ^    Q\, 

Sdiv,«;1 -K^yyfi,0 + Sdivxus°(x,S) = a,^,^0 = a^SO^Ge     in 0, 

[ - A0/ + (a* + Sfiis)I: +2/is) V^«s']n = ( - to* + a,0f
0^/)«     on T, 

^° = 0    on r, 

(7.6) 

with the Neumann boundary condition fj/i = -to*n modified appropriately by making use of the 
constitutive laws (6.45),(6.47) and (6.49). Now turn to the task of defining the MGF's for dis- 
placement and pressure. To this end, for given {f,g,h} depending on (y,t), consider the iso- 
thermal version of (6.61) and define the problem 

9«1 

8«1 

<H -£ - KiAyypl = g    in Qu (7.7) 

t\tt = hn    on r, 

p°b = 0    on r. 

Define the pairs of modified Green's functions {Gh
u, G

h
p}, {Gg

u, Gf}, as the pair {«],/?£}, solution 
to the above problem with {f = g = 0, h = -d(t)I} and (f - h - 0, g = -<5(')}> respectively. In 
addition, for given Gg, satisfying (7.1), define the auxiliary functions {Gh

u8, G
h

pe} and {G8
u6, G*fl} the 

solutions of the above problem with {f = a.tVyGo, g = 0, h = <x*GeI} and {/" = h = 0, 
g = ai<£,G0}. 

With the MGFs defined above, we now show that problems (7.7) and (7.6) are linearly related. 
To show this we generalize to the {u\,p^} system, the arguments leading to (7.2), based on lin- 
earity. To accomplish this consider the variational formulations of (7.6) and (7.7). Let L2(Q\) 
denote the usual set of square integrable, scalar valued, g-periodic functions defined on Q\, with 
inner product 
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(f,g)= f fgdQi  v/,gei2(öi) 

and let HX(Q\) denote the Sobolev subspace of L2(Q\) consisting of functions with the derivative 
8/ in the distributional sense satisfying 8/ e L2(Qi). Further, let U and V denote respectively the 
spaces of vectorial and scalar functions 

U(Qi) s {/ € {L\QX))\ V/ e {L2{QX))\ J /dQ, = o}, 

V{&) = #ö(ß.) = {/ e H\QX), / = 0     on r}. 

The variational formulation of (7.6) consists in, for each 5" € (0, oo), find {«s1(s)»/>b0(s')} e u x v 

such that: 

2A*S(V;«S
1
,V^) +(A: + 5/ils)(div^Hs

1,div^v)- (pb\divyv) = «>d°[(Go,divyv") - (f0*,v)r   Vv € U 

{Sdxvyus\q)+Kx(V,ft °, V^) = -(Sdiv,«s°,q) + a^SOf0(de,q)    V? e V, 

where 

(f0*,v)r = Jf0*n-vdr. 

This formulation can be rewritten in terms of the weak form of a single elliptic problem in the 
product space U x V. To show this define the bilinear form 

Aiu^ß,0; v,q) = 2A(v^1, V*F) + (^ +%s)(divy«s
1, div,v) - (ft0, div,v) 

+ (Sdiv,«;1,?) + #,(Vyft°, Vyq) 

and the linear function 

F(v,9) = a^f
0(^,divyv)+a1^öf0(^,g)-(^*,v)r-5(divi«s

0,?). (7.8) 

Thus we can rewrite the variational formulation as, for each S € (0, oo), find 
{»,' (s), n,°{s)} eUxV such that: 

A(us\pb°;v,q)=F(v,q),    V {v,q} € U x V. (7.9) 

This defines a robust elliptic problem in the Laplace space. A straightforward application of 
Korn's and Poincare's inequalities shows coercivity of A(v, v; q,q) in the product space U x V. 
Hence, existence of a unique solution follows from application of the Lax-Milgram lemma. 
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From (7.8), the corresponding variational problems for the Green's functions are 

A(Gu
h,Gp

h;v,q) = -{I,v)n    A(G7oh,G^";v,q) = a,(G^, div, v), 

■       A(GJ,GP'; v,q) = -(l,q),    A(G^g,G^g; v,q) = «,?,((£,*),    V{v,?} e U x V. 

With F given in (7.8), the linearity between (7.9) and (7.10) gives 

«s1 = Gu%*(x,S) + G/(y)5div,«J(*,S) + G7ehe{°(x,S) + G7egS6r°(x,S), 

fr0 = Gp%*(x,S) + G/(y)Sdivxu»(x,S) + G^h6{°(x,S)+Gp~e
gSet°(x,S), 

which after inverting the Laplace transform yields 

ul(x,y,t) = Gh
u * t*0 + G*u *  dh^ + Gj, * 0° + Gfe * ^, 

d(x,y,t) = GP * tl + Gl *  divx-i+<£ * flf + Gfr * -^. 

Using the above relations in (6.45),(6.47) and (6.49) we obtain after averaging 

r~ == - (£« + nx)l + ^ = -£0/ + (As*7 : + 2/is) VX + Aih^div^/ - <*.dT°I, 

= Z * tl + Kg *  divx^I + (Kh
e-oi.Ge) * $I + Kg° * -^' + ^ 

(7.10) 

,  J5    0 .  . „ fiffl \ 

x (dhr,Gj * t*0 + divyGl * divx-i + div,<& * 0? + div,Gf0 * -^J (7.11) 

with 

AtoO = W:+2A)V,GS-q;z, 

.Kto.') = W : +2A)VJGi - <£/'    J = A,*, 

and (7.3) was also used. Hence, the fluctuating part of the macroscopic stress tensor, t\, exhibits a 
viscoelastic constitutive behavior with memory which is represented by the convolution products 
in (7.11). Denoting Kh* = Kh

e - a,Ge, and collecting the results (6.44), (6.46), (6.50), (6.53), (7.4), 
(7.5)  and  (7.11),  we  obtain  the  following  system in   (x,t)  with  memory  in  terms  of 
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divxib*-ViP?=:-divxfI-, ■ ■ 
_ 9«° 

To* = «,H + 4 div, «^ +/is V>° + A^LS divx-gf, 

tx=Kh *t*0+rg *<nvx^i + Kh* *e°(i+Kg
$ *-^i+[ils- 

x (di^Gh
u * t>Q + div?f * divx ^+diyc: * e? + div?f * 2&),      . (7;12) 

90?      ..    9«°     ^A     0     -r    (~     80? \ _afMf~97 +   'Ijf ~ fA«w = ^a,lGe *"e7j' 
90? T nO „   /V        90?\ Pf»fQ -£ - KjA„0? = -pCT ( Ge■ * -^ ) ■. 

Thus, we have shown that the application of the modified Green's function technique reduces the 
microstructural dual porosity model to a system of integro-differential equations of Volterra type 
in which the dependence on the microstructure is incorporated in the convolution products ap- 
pearing in the r.h.s. of (7.12). The convolution kernels (Kj,K%, J = h,g) are related to the MGFs 
and can be calculated explicitly for a given particle geometry. In this formulation, the memory 
appears related to the delayed response of the vicinal water to local variations in the bulk phase. 
Among other effects, this delay is responsible for the creep viscous behavior of the clay structure 
under consolidation. This creep effect gives rise to a secondary compression stage, after the bulk 
water has been drained from the larger pores in the primary structure. 

7.2. Isothermal models for secondary consolidation and creep 

A simplified form of the above integro-differential system can be derived when thermal effects 
and the relaxation of the vicinal water (due to the coefficient nis) are negligible. Under these as- 
sumptions the generalized non-isothermal system of integro-differential (7.12) reduce to an iso- 
thermal system resembling in form some rheological models for secondary consolidation and creep 
in clay soils. Setting 0? = 0" = 0 and neglecting the relaxation coefficient /*ls in (7.11) we obtain 

-     ~ — 9«° 
tx=Kh  * t*0 + Kg  *  divx-^-7. 

Under these assumptions, the system (7.12) reduces to 

divx r0* - Vx/?? = -divx t[, 
fr = K,JT + 4divxH» + MSV>°, (7.13) 

9^ 
8* 

U = Kh  * to + Kg *  divx -£I, 

9ii° 
divx^-ü:FAxxp? = o. 
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This result shows that the overall macroscopic stress tensor is decomposed into a non-oscillatory 
elastic component (t*0) and a fluctuation (fj) governed by a viscoelastic constitutive behavior. The 
viscoelastic component exhibits fading memory as U depends on the history of the strain. This 
macroscale isothermal model resembles in form some viscoelastic models which have been pro- 
posed for creep during secondary consolidation (see e.g. [16,22,39,73]). Note that for the case 
where the convolution kernels are Dirac measures, (7.13) reduces to a macroscopic system ex- 
hibiting short term memory rather than fading memory. In this case, secondary consolidation is 
governed by the Kelvin Voigt viscoelastic constitutive equations, consisting of springs in com- 
bination with dashpots (see e.g. [31,48,76]). 

7.3. Lumped-parameter first-order kinetic models 

We now turn to the task of reproducing some of the classical lumped-parameter models for 
heat, mass and momentum transfer ([9,64,74,75]) as particular cases of the general microstructural 
dual porosity model of Section 6. We begin by reproducing lumped-parameter first-order kinetic 
models which correspond to small particles with high conductivities (relative to the surface film 
coefficient) so that local pressure and temperature gradients within the particles may be neglected. 
Under this assumption, pi and 9°T are independent of the local variable y and consequently their 
time evolution is dictated by the interfacial resistance. In terms of the Biot numbers, this as- 
ymptotic case corresponds to the limit Bij -* 0, (j = P, T) where particle resistance to heat 
conduction and fluid flow is small compared to the convection resistance at the particle surface. 

First-order kinetic model for heat conduction. We begin by discussing a first-order kinetic model 
for heat conduction. Assume that the particle thermal conductivity KT tends to infinity so that 
local temperature gradients within the particles are negligible (\/y6T = 0 and 6T = 6T(x, t)). This is 
equivalent to a time scale assumption, wherein for each instant of time t, we have local thermal 
equilibrium within the particle domain. 

Using definition (6.57) for E* and Q*, by averaging the energy (6.22) together with the boundary 
condition (6.31) gives 

Whence 

ß.=|[/ßf da-M«f(«,o-**.')). S-^lp 
The dual porosity model (6.60) and (6.61) reduces to 

lis^ul + (A* + fis)Vxdivxu°s + ßLSVxdivx -£ - VxP°{ - «,0^0° = F.(x,f), 

-afnfM + divx^-JS:fA»(pr=^(flf-Ö0r). <7-14) or or 
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ftflO _ 

pniCT^=-öT {$-$),    xGflf,    t>0 

with 

JF.(x,/) = -2p,divz V# - As*VxdivX + V^° - /^-div^' (7.15) 

and 

du1 

ot (7.16) 

div/^-^,AB!pg = -divjr^(x,0-S(fl0r-flf).   .^0,    '>°- 

The exchange of mass and energy between the local and global systems is given in terms of 
simplified relations, assumed proportional to a temperature difference. The remaining distributed 
source/sink term whose evaluation still requires averaging the solution of the cell problem (7,16), 
is the momentum transfer function F,. 

Lumped-parameter first-order kinetic hydrodynamical model. We now make use of a similar 
lumped-parameter assumption for the fluid flow problem. In analogy to the previous heat transfer 
analysis, we consider a time scale assumption wherein the intra-particle fluid is assumed uniformly 
distributed throughout the local cell, at instantaneous mechanical and thermal equilibrium as it is 
disturbed by the global system. The intra-particle non-equilibrium effects are overlooked, the 
hydraulic conductivity, K\, tends to infinity and the relaxation coefficient p.* tends to zero. Hence, 
pi is independent of the fast variable y and consequently the cell behaves as a single point for both 
fluid flow and heat transfer. Next we show that under these assumptions the adsorbed/bulk water 
mass transfer function is governed by a simplified Warren-Root-type coupling. Averaging the 
mass balance (6.18) and using boundary condition (6.30) gives 

~ dt 

dt 

d^ul+nidivx^ + rp(pl-p0
(),    TP=±fröPdT. (7.17) 

With absence of intra-particle non-equilibrium effects, a simplified elasticity solution can be ob- 
tained for the fluctuating displacementu\. Denote ö,j the Kronecker delta symbol and a* a fourth- 
order tensor with components am = %5,jöu + ps(Siköj, + SuSJk). Without loss of generality and 
ease of exposition, we restrict subsequent discussion to the case of absence of swelling stresses at 
the reference configuration (IT = 0). Using the fact that A, = Pb(*. 0 and Mis = 0in (7-16) together 
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with boundary condition (6.56) shows that u\ satisfies the following elasticity problem with 
Neumann boundary conditions 

div,(a*V^)=0    inßj, 

txn = [a*V>: - (a,0° +p°)I\n = -t*0n = -(a*V>°>     on f, 

where constitutive (6.44)-(6.50) for tx and t*0 have been used. Let II = dyou denote the unity 
fourth-order tensor and let ¥ and v be respectively a third-order tensor and a vector satisfying 
the following canonical cell problems 

div,(a*V^«P) = 0    inö,, div,(a*V*v) =0    in Qu 

a*Vy¥n = -a*IIn    on T, (a*V*v)w = In     on T. 

By linearity, «] is given by: 

ul = ¥(y)Vs«°s(x, 0 + vO) [pg(x, o + «,ePT(x, o]. (7.18) 

Using this result in (7.15), the distributed source term is then given by 

Ft = -div, (a'V^') + «,Vx/>° = -divx(o*Vjf'VX) + M - a*Vf)VxP°b - a,o*^Vx0f 

which when combined with the first equation in (7.14), with fiLS = 0, gives 

where   c   denotes   the   fourth-order   tensor   c = nxa* + a*Vy¥.   Further,   with   isotropy, 
div, ¥ = d\vy ¥1 and c and V* v admit the representations 

Cffu = ^M« + tfWy, + <5,/<5,*),       «* V^ = (3AS* + 2ns)di^vl = -div/TI. 

Hence,    denoting    y' = dfyv, y, = «i - y(3A* + 2/0 = «i + divy «P    and    y2 = 1 - ylf    since 
pQ^zp^-pQ, the overall momentum equation can be rewritten as: 

^AX + (A° + tf)VxdivX " V.Vrfg - ftVrfP - «.y,V,0°r = 0. 

Substituting relation (7.18) for u\ in the mass balance (7.17), we obtain 

-^a1/Jl^ + n,divx^+5p(p»-^) = -divy'Pdivx-^-y'^ + a»-^:J. 

Whence 

9$        J.    6w°        ~/0      OX      ,9(/>B-/>f) jr 
-y, -gy+vi *v, -£ = -Sp(p°h -p°{) - i   B

8,    ,   y* = M«i - «*y • 
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Using the same lumped parameter assumptions in the bulk water mass balance (6.7) and using the 
boundary conditions (6.24) and (6.30) gives 

80° «faf^+ divxv? = jo!"11 »J ■ ndf = Ißr1 Jr (q\ +*jf) ■ ndr 

Since Vf° = q{° + Hf(9«0/8/), the above result combined with (7.18) gives 

Hence the dual porosity model reduces to the following system in (x, t) 

fi^u" + (A° + A°)V,divX - y2V^? - y,V^ - a*y, V,0°r = 0, 

/    ö0r 90? ..    6««     ^        0     ~, 0      0,      ,8(pg-rf) 
~y * ~ef "afWf "ef+r2 v* "ef ~ FAxx/7°= ^ K - /#) + y     8/    » 

80°,      ,.    8«°       ~, 0      0.      ,6(^-/7°) 

Pf«fCf-^ - **A„0? = 5r(# - 0°), 

80°        ~ 
P"iCr-^ = -^r(0r-0?)    x € Of>    f > 0. 

In the above model, the only contributions to the macroscopic heat conduction and fluid flow 
are due to the bulk phase system. As in the microstructural dual porosity theory, particles act as 
storage sites for mass and thermal energy. Their contributions to the global problem are 
manifest in terms of the simplified first-order mass and heat transfer functions. Also note that, 
since we have neglected the non-equilibrium coefficient /ils in the above model, physico-chemical 
effects are manifest in the post-processing approach for /?° and in the equilibrium isothermal and 
non-isothermal components of the swelling pressure (terms involving Kk and a,* in (6.41)). In the 
resultant macroscopic governing equations, these components are incorporated in the coeffi- 
cients A° and a*.   

In addition to the classical lumped-parameter mass transfer function (öP{p\ — p®)) we may note 
the appearance of an additional exchange term (-/(dipl -p%)/dt)) in the macroscopic mass bal- 
ances. Within the framework of homogenization this latter component appears strongly related to 
mass transfer induced by particle consolidation, as it arises from the dependence of the fluctuating 
displacement, »], on the pressure excess pi through (7.18). Clearly, for rigid media this extra mass 
transfer component vanishes. 

In what follows we pursue the derivation of two-equation models wherein particle flow and 
heat transfer also appear in the global macroscopic equations. Subsequently, in order to provide 
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physical interpretation for the coefficients y, and y2, arising form the homogenization procedure, 
we proceed by identifying the resultant lumped-parameter two-equation model with the one de- 
veloped by Wilson and Aifantis ([75]). 

7.4. Lumped-parameter two-equation models 

In the previous models, particles conductivities were scaled by e2. This led to macroscopic 
models where heat conduction and fluid flow at the macroscale take place only in the global 
medium. Particles act as storage sites for mass and thermal energy. In what follows, two-equation 
models can be derived by considering the pair of conductivities {Kn,K{} of the same order of 
{KfE,KE

{} so that {KTi,K{} are now scaled by e°. In this new setting Eqs. (6.18M6.22) are now 
replaced by 

-M^ + div^? + div^+div;M + diV;,M==0) (7.19) 

divX = div,A° = 0, (7.20) 

AO=_KT(V,0°r + VX), (7.21) 

pCr^ + div,A°+divyA' =0, (7.22) 

rf = -Ai(VJtp£ + V^i). (7-23) 

Under the same scaling law in the Biot numbers, this system is now supplemented by the 
boundary conditions h°T ■ n = rf • n = 0 on T. Using (7.21) and (7.23) in (7.20), together with the 
above boundary conditions, Q\ and p\ satisfy the following Neumann problems 

A„0}. = O    in  ß,        -Kr(Vx9°T + Vye
l

T)=0    on f, 

Ayyp], = 0    in Qh       -Kx{VxPl + %p{) = 0    on F, 

which by the same arguments leading to (6.37) and (6.39) gives 

e\.(x,y,t) = <o(y) ■ VxePT(x,t) + e*T(x,t),       pl(x,y,t) = m(y) ■ Vxp°h(x,t) +pl(x,t) 

TT° = -K[WT,    with   Kl = \Q\~X f KT(I + V/o) dß,, 
Ja 

q° = -JfLypg   with   KL = \Q\~l f KX{I + Vy<o)dQu 
JQA 

with <o satisfying the Neumann problem (6.38) in Q\. With isotropy and adopting the same 
procedure one obtains the following two-equation model 
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■^A^ + (< + Mll)V,|üvX--72V^^7iVrf£-^I-VÄi9j-^Ov ' 

»flO _ . 
pf„fCf^_ ^^00 = ^(^-00), 

When comparing this result with the previous first order Kinetic models, the difference is the 
appearance of the extra diffusion terms in the macroscopic energy and mass balance 
(divx hT° = -ATjAxxö" and div,^° = -K^^pl) governing particle heat conduction and adsorbed 
fluid flow at the macroscale. 

If we neglect the term involving the coefficient / in the mass transfer and the terms involving 
physico-chemical effects, then the resultant model resembles in form the reduced version of the 
lumped-parameter thermomechanical model developed by Bai and Roegier [8] for incompressible 
solid phase. Physical interpretation of the coefficients y, and y2 can be obtained by considering the 
isothermal version of Bai and Roegier's model developed by Wilson and Aifantis [75]. If we 
denote K\ the overall bulk modulus of the compacted clay (without the bulk phase) and K2 the 
overall bulk modulus of the macroscopic system, following [75], for incompressible solid phase, 
we have Vi = 1 - K2/K\ and y2 = K2/Ky. 

7.5. One-equation models: local equilibrium 

Local thermal equilibrium. When 0° and 0° are sufficiently close to each other, the principle of 
local thermal equilibrium is valid and a single macroscopic temperature can be assigned to both 
clay particles and bulk water [63]. Within the framework of homogenization this is imposed by 
assuming large values of the Biot number. For example one may scale Bie

T by 0(e_1). This scaling 
replaces boundary condition (6.31) by 0^ = 0^ on T. Moreover, since these variables only depend 
on (x, t) this yield 0° = 0? = 0o(x, t). Hence, as in the two-scale model, there is no need to consider 
individual energy balances for the particles and bulk phase. By adding them up we obtain the 
following one-equation heat transfer model 

^A^ + (X°s + ti°s)Vxdivxu°s - y2Vxp° - y,VxPl - «,y,V,0° = 0, 

~y*~dT + yid™x~dt'~*
LA

*^B = -fr(p& -Pr)-y      a,     . 

80° 
p,C—-KjAxx6P = 0,    xeQf,    t>0, 
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where y* = /a, + afnf, Kj = KJ + Kj and ptC = prnCT + p7«fCf (with pt = p( + p) denote re- 
spectively the macroscopic effective thermal conductivity and specific heat capacity. 

Local hydrodynamic equilibrium. In analogy to the previous model the scaling Bip = Bips'1 

together with boundary condition (5.3) leads to &-$ = P°(*,0- This condition has been re- 
ferred to as large-scale mechanical equilibrium [63]. Since y, + y2 = 1, after adding the mass 
balances of adsorbed and bulk water, we are led with the following one-equation hydrodynamical 
model. 

/x^«0. + (A° + rf)V,divX - V,P° - a-y.V.e0 = 0, 

-y^ + div^-^A.P° = 0, 

p,C^-KjAxx(f
> = 0,    JcGßf,    t>0, 

with Kl = KL+ KP and y = y, + y* denoting respectively the macroscopic effective hydraulic 
conductivity and overall liquid coefficient of thermal expansion. 

7.6. Isothermal poroelastic model 

In the isothermal case the above system reduces to 

pl^ul + (X°s + AOV,div,«° - VXP° = 0, 

fin0 

divI^.-A:*AXXJP
0 = 0,        x€ßf)    t>0, 

which resembles in form Biot's consolidation model of linear elastic media for incompressible 
solid phase. If we neglect the physico-chemical component incorporated in the coefficient As, by 
setting Kls = 0 so that A* = A,, then the above model reduces exactly to the Biot model. 

Thus, we have exploited the ability of the microstructural dual porosity system in reproducing a 
class of well known models as particular cases of the general framework. 

8. Conclusions 

A three-scale thermomechanical model for swelling porous media (2:1 lattice silicates and 
lyophilic polymers) is proposed. The upscaling is based on combination of hybrid mixture theory 
(HMT) and homogenization. Application of these two levels of averaging led to a generalized 
microstructural dual porosity model wherein the macroscopic swelling soil is covered by two 
distinct interacting coexisting systems: a macroscopic medium which incorporates the global 
properties and a local family of cells representing storage sites for mass, momentum and energy. 
The two. sheets are coupled via exchange transfer functions of mass, momentum and energy. A 
notable consequence of the three-scale model proposed herein is that it provides an accurate 
portrait of the complicated distributed exchange processes between the global and local systems. 
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Application of the HMT approach led to a two-scale thermomechanical model which governs 
particle swelling when physico-chemical forces between the adsorbed water and the minerals are 
dominated by surface hydration stresses Within the HMT framework, hydration effects are in- 
corporated upon selection of a proper set of internal variables coupled with the Coleman-Noll 
method of exploitation of the entropy inequality for derivation of a proper constitutive theory. In 
the isothermal case, hydration effects are manifested: (i) in a modified effective stress principle 
through an additional hydration component (t[); (ii) in a modified form of Darcy's law for the 
vicinal water in terms of an additional potential (volume fraction gradient) accounting for flow 
induced by physico-chemical effects; (iii) in the appearance of a retardation viscosity coefficient 
(/zj related to the viscoelastic behavior of the volumetric stresses. In the non-isothermal case the 
coupling between hydration and thermal effects is manifest through a physico-chemical coefficient 
of thermal expansion (a)s) which appears in the overall momentum balance, and also governs the 
mechanical work of hydration stresses in the overall two-scale energy balance. 

The proposed theory was also capable of reproducing other classical theories, such as creep 
models for secondary consolidation and lumped-parameter models. The classical approaches for 
secondary consolidation and creep, based on viscoelastic constitutive equations with fading 
memory, were recovered by reducing the dual porosity model to a single porosity system using a 
modified Green's function method. This yields global balances of mass, momentum and energy 
with fading memory. Lumped-parameter models were reproduced by assuming high conductiv- 
ities (thermal and hydraulic) for the swelling particles such that local variations of the potentials 
(pressure for vicinal water flow and temperature for heat transfer) within the particle are ne- 
glected. This yields Warren-Root type systems wherein simplified constitutive equations for the 
exchange terms (e.g. proportional to a potential difference) are postulated. We remark that 
lumped-parameter models require the introduction of a time scale constraint where at each instant 
of time, the adsorbed water is assumed at equilibrium and uniformly distributed throughout the 
particle domain. If the constraint is not satisfied, then the resultant model must incorporate 
memory effects accounting for retardation mechanisms as suggested by Auriualt and Royer [6]. 
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Abstract. The thermodynamical relations for a two-phase, ^/-constituent, swelling porous medium 
are derived using a hybridization of averaging and the mixture-theoretic approach of Bowen. Ex- 
amples of such media include 2-1 lattice clays and lyophilic polymers. A novel, scalar definition for 
the macroscale chemical potential for porous media is introduced, and it is shown how the properties 
of this chemical potential can be derived by slightly expanding the usual Coleman and Noll approach 
for exploiting the entropy inequality to obtain near-equilibrium results. The relationship between 
this novel scalar chemical potential and the tensorial chemical potential of Bowen is discussed. The 
tensorial chemical potential may be discontinuous between the solid and fluid phases at equilibrium; 
a result in clear contrast to Gibbsian theories. It is shown that the macroscopic scalar chemical 
potential is completely analogous with the Gibbsian chemical potential. The relation between the 
two potentials is illustrated in three examples. 

Key words: macroscale, chemical potential, mixture theory, porous media, swelling porous media. 

Nomenclature 

In general, a subscript Greek letter indicates a macroscale quantity from that phase. Superscript 

minuscules indicate the constituent, so that, e.g., \}
a is the macroscopic velocity of constituent j in 

the a-phase. A caret over the symbol, , is used to emphasize that the quantity represents a transfer 
from either another phase or from other constituents. 

A]
a Helmholtz free energy density of y'th constituent in a-phase 

Aa — Ea ~ Tr)of 

bJ
a external entropy source for j'th constituent in a-phase. 

C„ mass concentration. 

dJ
a symmetric part of Vv^. 

cji rate of mass exchange from other phase to a-phase of jth constituent. 

EJ
a energy density. 

Es macroscale strain tensor of solid phase. 

EQ energy gained by constituent j in phase a due to non-chemical, 
non-mechanical interactions with other constituents within phase a. 

Fs deformation gradient, gradjc5, of the solid phase. 
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g gravity. 
Ga Gibbs free energy. 

ha external supply of energy. 

\a gain of momentum of constituent i of phase a due to mechanical 
interactions with other species within the same phase. 

na unit outward normal to phase a. 
pa thermodynamic pressure. 

qa heat flux of constituent j in a-phase. 

Qa gain of energy of constituent j in phase a due to nonmass 
transfer interactions with the other phase. 

?a rate of jth constituent mass gained within phase a. 

ta stress tensor of jth constituent in a-phase. 
T temperature. 

TJ
a gain of momentum of phase a due to mechanical interactions 

with the other phase. 

uJ
a diffusive velocity, v„ — va. 

\a mass averaged velocity of jth constituent in phase a. 

\a velocity of phase a =2^;_i Q*vii- 
5 V representative elementary volume (REV). 
5 Va portion of REV within a-phase. 
wai8 velocity of jth constituent in the interface. 
e" volume fraction of a-phase in REV =|<5Va|/|(5V |. 
Ya indicator function for phase a. 
ka Lagrange multiplier for continuity equation of phase a. 

XJ
a Lagrange multiplier for continuity equation of jth constituent in phase a. 

Ta Lagrange multiplier for restrictions on sum of gradients of diffusive velocities. 

A^ entropy production density. 

Ha scalar chemical potential of jth constituent in phase a. 

va tensorial chemical potential of jth constituent in phase a. 

r)a entropy density. 

ria entropy gain of y'th constituent in a-phase due to nonmass 
transfer interactions with other constituents within phase a. 

4>a entropy flux. 
<$>a entropy gained by jth constituent in a-phase due to 

nonmass transfer interactions with the other phase. 

pa averaged mass density of jth constituent in a-phase = Capa. 

Pa averaged mass density of a-phase = J2,—1 Pa- 

1. Introduction 

The purpose of this paper is three-fold: to introduce a novel definition of the 
macroscale chemical potential for a porous medium, to show how one can derive 
the properties of this chemical potential by slightly expanding the usual Coleman 
and Noll approach for exploiting the entropy inequality to obtain near-equilibrium 
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results, and to discuss the application of mixture theory to swelling porous media. 
By our modified approach and by using an appropriate definition of the chemical 
potential, we have been able to derive properties of the chemical potential which 
corresponds exactly with the properties of the classical Gibbsian chemical poten- 
tial. We illustrate these techniques and the motivation for a new definition of the 
chemical potential within the context of swelling porous media. 

Due to the chemical and physical forces between phases, many porous 
media can swell or shrink resulting in macroscopic behavior which may differ 
significantly from granular media. Examples of such media include lyophilic poly- 
mers and clay soils. The understanding of the constitutive behavior of these materi- 
als is crucial in applications involving almost all aspects of life. Swelling polymers 
have numerous technological applications in drug delivery, contact lenses, semi- 
conductor manufacturing and food stuffs, and clay soils are widely distributed in 
the earth's crust. Hence they play a critical role in the transport of nutrients and 
pesticides in agriculture, in various high level nuclear waste isolation scenarios, in 
barriers for commercial land fills, and in consolidation and failure of foundations, 
highways and runways. Although everything derived in this paper can be applied to 
a wide variety of swelling systems, for ease of exposition we restrict our discussion 
to swelling clay soils. 

The complex mechanisms underlying the constitutive behavior of a hydrophilic 
clay soil are a consequence of its complicated microstructure. Clay minerals consist 
of hydrous aluminum and magnesium silicates with an expanding layer lattice. 
Their tremendous specific surface area and their charged character cause hydrated 
clay platelets to form 'particles'. These particles swell under hydration and shrink 
under desication. The platelet-water bonding forces are usually referred to as 'hy- 
dration forces' and cause the macroscopic behavior of clays to differ significantly 
from the behavior of granular nonswelling media. In the case of hydrophilic col- 
loidal particles (e.g. smectites), the hydration forces are believed to arise from the 
hydrophilic character of the mineral surfaces. These interactions modify the ther- 
modynamical properties of the water in the interlamellar spaces and consequently 
its properties vary with the proximity to the solid surface [38, 54-56]. Hence, the 
interlamellar water is termed vicinal water to distinguish it from its bulk or free- 
phase counterpart (i.e. water free of any adsorptive force). It has been advocated in 
[30-32, 35, 47,48, 57, 58] that surface hydration forces are the dominant mechan- 
ism causing the swelling of clays, and it is these forces which we account for when 
developing this theory. 

In this paper we illustrate the use of rational thermodynamics in developing a 
mathematical model for a multicomponent swelling porous media with particular 
emphasis on the definition of the chemical potential. This is accomplished by ad- 
opting a proper theory of constitution which includes appropriate internal variables 
needed to capture the swelling character of the system. In particular, the approach 
developed herein provides a thermodynamical basis for the role hydration forces 
play in the adsorption and diffusion of contaminants in a swelling medium. 
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In classical mixture theory a single-phase medium composed of N constituents 
is viewed as N co-existing continua. Biot [15-17] and later more rigorously by 
Bowen [19-21] extended the theory of mixtures to model a porous medium so that 
at the macroscale a two-phase medium is viewed as two co-existing continua. In his 
work, macroscopic forms of the field equations (conservation of mass, momentum 
balance, and conservation of energy), which incorporate exchange terms between 
the co-existing continua, are postulated. It has been shown [40, 41] that if the mi- 
croscopic field equations are averaged then the terms in Bowen's macroscopic field 
equations can be identified precisely with microscopic counterparts. The combin- 
ation of averaging and mixture theory is referred to hybrid mixture theory (HMT). 
In both of these formulations, the constitutive restrictions are determined at the 
macroscale by exploiting the entropy inequality using the method of Coleman and 
Noll [25]. 

Although HMT has been used in several fields (e.g. alloy solidification [10]), 
a porous body is the canonical model of a system to which HMT is applied [1- 
3, 37, 64, 65]. In fact, the first application of HMT was to model single-phase 
flow through a deformable, elastic porous medium in which Darcy's law, which 
governs the flow of the liquid phase, was recovered [42]. Later the theory was 
extended to describe multicomponent fluid flow in porous media, in which the 
derivation of Fick's law and a generalized Darcy's law were the primary object- 
ives [39]. Soon after, the theory was again extended to include multiphase flow in 
porous media with interfacial effects [37, 45]. Among other results, this approach 
[43-45] extended the thermodynamical groundwork for the physics of two-phase 
flow, e.g., [21, 34, 59]. In particular, a near-equilibrium capillary pressure relation 
and a generalized macroscopic form of Darcy's law were derived in which the 
generalized Darcy's law includes an additional interaction potential involving a 
saturation gradient. This generalized form of Darcy's law circumvents the usual 
heuristic extension of the single-fluid Darcy's law to that for multiple-fluid phases 
with relative permeability. 

We discuss in detail the consequence of postulating the existence of a con- 
stitutive relation for the time rate of change of the volume fraction as a means 
of closing the system of equations [21]. As in all upscaling approaches, there 
exists an additional variable, the volume fraction in this case, for which there is 
no additional equation. The appearance of the additional variable is a consequence 
of losing information about the microscopic geometry and is known as the closure 
issue [18]. The means of closing the system is crucial in our formulation since, as 
a result, the macroscopic system has some viscoelastic constitutive behavior. As 
we shall see, the results are in agreement with some empirically based constitutive 
theories. 

The macroscale chemical potential has been defined in a variety of ways, and 
here we concentrate on the definitions relating the change of the intensive 
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Helmholtz potential with respect to the concentration, i.e. if jTj is the chemical 
potential of the y'th constituent relative to the Nth constituent, then 

ßj =  J,      J = !,'.- ,N -L, 

in which Aa is the intensive Helmholtz potential of phase a. We employ a modific- 
ation of the traditional linearization procedure for the dissipative entropy inequality 
to obtain near-equilibrium relations. The traditional procedure involves linearizing 
coefficients which are zero at equilibrium. For a system composed of N mis- 
cible components, this traditional approach yields a generalized form of Fick's 
law which has not been as sharp as needed for practical applications. In [2, 39] the 
following form of Fick's law is derived: 

RX=V^=V(^-^),     j = \,...,N-h    « = l,s, (l) 

where a = l, s denotes the liquid and solid phase, respectively, and RJ
a is a material 

tensor arising from a linearization procedure. After appropriate simplifications [28, 
39] Equation (l) reduces to the classical Fick's law which states that the diffus- 
ive velocity is proportional to the concentration gradient [7]. However, we are 
interested in reproducing the more general form of Fick's law, which according 
to statistical thermodynamics, states that flow is driven by an absolute chemical 
potential gradient (i.e. V/^) [80]. This is in contrast to Equation (l) which states 
that flow is driven by a chemical potential gradient relative to the A/th component, 
implying that the diffusive velocity is a function of how the constituents are labeled. 

This lack of clarity is similarly manifested in equilibrium relations obtained 
from the entropy principle. For example, classical Gibbsian thermodynamics tells 
us that at equilibrium, the chemical potential of a single constituent coexisting in 
two phases is constant, i.e., fi{ = fi{, j = l,... , N [23]. Yet historically the 
only derivable comparable result obtained by exploiting the entropy inequality in 
mixture theory is [2] 

m=ui, j = i,...,N-i. (2) 

As we shall see, there is no prescribed method for extending the above relative 
result to the absolute form at the macroscale. The primary reason for obtaining 
results in terms of the relative chemical potential is the interdependence of the 
concentrations (£*l, CJ

a = l) and the interdependence of u£, j = l,... , N, 
through the constraint 

N 

VcV=0. (3) 

In classical Gibbsian thermodynamics, this interdependence is avoided because 
extensive variables representing the number of molecules of each constituent are 
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used as independent variables, instead of intensive variables (concentrations). Us- 
ing extensive variables, such as the number of molecules of each constituent, is not 
possible in HMT as the upscaling process cannot be performed on extensive vari- 
ables, at least not in a physically meaningful manner. Thus, all results standardly 
derived [2, 39] are in terms of the relative chemical potential. 

Some of the results involving the relative chemical potential can be sharpened 
by choosing ß% appropriately and subsequently deriving results for the absolute 
(non-relative) chemical potentials. For example, in [19,22], the following tensorial 
definition for the chemical potential was proposed and has since been used in most 
mixture theory derivations [2, 39]: 

vJ==Ajl rty'. (4) va — nn' ja' 
Pa 

This definition has the nice property that 

X>X = AaI--J-ta, (5) 
.   . Pa 

.7 = 1 

where t^ are the stress tensors of phase a. For the case of a perfect fluid, ta = - paI, 
and the right hand side of (5) reduces to the classical thermostatics concept of 
Gibbs energy [23]. This definition for the chemical potential seems to be motivated 
by convenience and is not easily reconciled with the classical definition, which is a 
scalar. The classical Gibbsian chemical potential, pJ

a, which is defined as the deriv- 
ative of the extensive Helmholtz energy with respect to the number of molecules of 
constituent j [23], has the following characteristics: (1) it is a scalar and measures 
the energy required to insert a particle into the system [61]; (2) its gradient is the 
driving force for diffusive flow (Fick's law) [80]; and (3) it is constant for a single 
constituent coexisting in two phases at equilibrium, i.e. for the solid, s, and liquid 
phase, \,fi{ = ß(,j = l,-..,N where N is the number of miscible components 
in each phase [23]. The fact that the tensorial definition is not a scalar has lead to 
some difficulty in evaluating all its components, especially the off-diagonal terms 
[8,69]. Furthermore, Bowen's tensorial chemical potential (4) also does not satisfy 
characteristics 2 or 3. 

The above issues on the chemical potential were partially addressed in [14] 
within the context of HMT applied to diffusion and adsorption of contaminants in 
a granular, or non-swelling, porous media. In this work, two definitions for the Nth 
chemical potential were introduced, and their effects on the relative form of Fick's 
law (1) and equilibrium result (2) were discussed. Here the sharper results of [14] 
are extended to accurately describe diffusion and adsorption of a multicomponent 
fluid in a swelling porous media, and a new application of the Lagrange multiplier 
technique of Liu [52] is used to enforce the constraint on the gradient of diffusive 
velocities (3) weakly. Liu proved that exploiting the entropy inequality subject to 
constraints is equivalent to exploiting a modified entropy inequality formed by 
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adding linear combinations of the constraints premultiplied by Lagrange factors. 
The technique we use to derive our results is a modification of the Lagrange mul- 
tiplier technique developed by Liu. In contrast to Liu and Müller [52, 53, 63], 
who view the field equations as constraints, we show how the Lagrange multiplier 
technique can be extended to enforce other relationships between various variables, 
such as the relationship given by Equation (3). 

In the next section we state the governing balance laws and entropy inequality 
as derived by averaging, along with notation and major assumptions. In the fol- 
lowing section, constitutive assumptions in the form of the choice of constitutive 
independent variables are made, and the entropy inequality is formulated in terms 
of Lagrange multipliers. In Section 4, we derive general nonequilibrium results 
(i.e. results which always hold) obtained by exploiting the entropy inequality in the 
sense of Coleman and Noll and present two definitions for the macroscale chemical 
potential. In Sections 5 and 6, results which hold at equilibrium and which are 
obtained by linearizing about equilibrium are derived, respectively. In Section 7, 
we compare several definitions of the chemical potential by studying three hy- 
pothetical experiments. In the final section, we provide a few salient concluding 
remarks. 

2.  Macroscale Balance Laws and Entropy Inequality 

In this section, we briefly review the derivation of the macroscale balance laws and 
entropy inequality. In the process, it is shown how macroscale variables in the field 
equations can be precisely defined in terms of their microscopic counterparts. 

Consider a multi-constituent single-phase flow (denoted by 1 for liquid) through 
a deformable porous medium (denoted by s for solid). For simplicity we consider 
the range of moderate moisture content which allows us to assume that interfaces 
contain no thermodynamic properties. Consequently, it is assumed no amount of 
mass, momentum, energy, or entropy are lost when being transferred between 
phases. Interfacial effects can easily be included by pursuing any of the approaches 
of [29, 37, 45]; however, since this issue is not our primary purpose, we shall omit 
these terms to keep the level of algebra at a minimum. 

In addition, it is assumed that there exists the same N constituents in each 
phase. This assumption is necessary to derive the correct equilibrium results for 
the chemical potential [2]. For the more practical case, where there are less than N 
constituents per phase, the corresponding results can be obtained after exploiting 
the entropy inequality by setting the concentrations of the appropriate constitu- 
ents to zero. Because of this restriction, it is necessary to consider the governing 
equations for each constituent in each bulk phase. We first present the governing 
microscopic equations, then the averaging procedure, and finally we present the 
averaged equations for the bulk phase with no assumptions made on the size of 
perturbation of the thermodynamic variables. 
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At the microscale we assume the governing equations used in mixture theory 
hold for each phase. Consequently, thermodynamic properties exist for each con- 
stituent at each point within each phase, and each constituent must satisfy the 
governing field equations: conservation of mass, balance of linear and angular 
momentum, conservation of energy, and entropy production. Assuming no surface 
discontinuities, the constituent, microscopic field equations can be expressed for a 
given phase, a, as (following the notation of [33]) 

— (pifj) + V • (pVV) - V  V - pjfj = pjGj + pj$\ (6) 
dt 

where fj is the mass-average (over the phase) thermodynamic property of con- 
stituent j, \j is the mass-average velocity vector, pj is the mass density, ij is the 
flux vector, fj is the external supply, Gj is the net production, and fJ represents 
the influx of f from all other constituents (e.g. due to chemical reactions). If there 

is only one constituent, V  is zero. 
The averaging procedure is based on ideas laid down in [72, 78, 79]. Several 

methods are available, but we choose the computationally simplest. Equations are 
averaged over a representative elementary volume (REV) by weighted integration 
using the indicator function of the a-phase. To avoid the mathematical difficulties 
of, for example, defining a derivative of the averaged quantities resulting from us- 
ing such a weighting function, one must treat the averaged quantity as a distribution 
[68, 71]. 

It should be noted that using this simple weight function may mean that the 
averaged value may not represent the actual values being measured. To account for 
the measuring technique, one needs to choose a weight function which represents 
the instrument used to measure the physical properties [27]. Extensions of the 
presented theory to such cases are straight forward. 

After averaging Equation (6), the system is considered to be a mixture so that 
each component in each phase and each bulk phase now have thermodynamic 
properties existing at each point within the macroscopic body. The macroscopic 
definition of each field variable in terms of its microscopic counterpart, making no 
small perturbations assumptions, is given in Appendix A. 

Here we make the additional assumptions that all external sources except for 
body forces (gravity), are negligible and that the solid and fluid are at local thermal 
equilibrium so that a common temperature T can be assigned for both phases, i.e. 
7] = Ts = T. Furthermore, we assume the solid and fluid are nonpolar so that 
conservation of angular momentum for each phase implies the stress tensors of 
each phase are symmetric. For ease of exposition we assume no exchange of mass 
exists between constituents within a phase (i.e. no chemical reactions: r£ = 0), 
although extending the theory to such cases is straight forward [2,39]. We do allow 
exchange of mass between phases. If the macroscopic variables are defined as in 
Appendix A, then the form of the macroscopic field equations have the following 
form: 
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Conservation of mass 
For the ;'th component in the a-phase, conservation of mass can be expressed as 

Dy+^iV.v^^    a = l,s,     j = l,...,N, (7) 

where DJ
a/Dt denotes the material time derivative following the ;'th component in 

the a-phase, i.e., 

| = i + vj.v,   ; = ,,...,tf,a = i,s. 

Summing over all constituents, and defining the bulk phase variables appropriately, 
we obtain conservation of mass for the a-phase, 

Ptt(eaPa)+egA,V-vg=eg,    a = l,s, (8) 

where e« represents the net mass gained by the a-phase from the other phase, and 
Da/Dt denotes the material time derivative following the a-phase. Subtracting C„ 
times Equation (8) from (7) yields a more useful form of the continuity equation 
for constituents: 

£ap^+V.(£aPX) = (?i-C^),    a=l,s,   j = \,...,N.   (9) 

Conservation of momentum 
Momentum balance for the jth component of the a-phase can be expressed as 

£<*Pg 

.DV J    '(X Ttt 

Dt 
V • (£„tff) - eapag = fa+'g,    of = 1, s,   j = l,...,N     (10) 

and for the a-phase we have 

eaPa
Ij^-V-(eata)-eapag = Ta,    a=l,s, (11) 

where ta denotes the average symmetric stress tensors for the a-phase, and Ta 

denotes the net gain of momentum for the a-phase due to interactions with the other 
phase. This form of the momentum equation differs from [21] or [6] in that their 
definition for the partial stress tensor and density incorporate the volume fraction. 

Conservation of energy 
For the ;'th component of the a-phase, conservation of energy is given by 

and for the a-phase by 

eapa-jj-2- - sata ■ da - V   (eaqtt) = Qa,        a = 1, s, (12) 
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where Ea is the average internal energy density, per unit mass, of the a-phase, qa 

denotes the heat flux, da is the symmetric part ofVva, A : B = tr(ABr) denotes 
the classical inner product between tensors, and Qa denotes the gain of energy by 
the a-phase due to the interactions with the other phase. 

Entropy inequality 
The entropy inequality for the entire mixture is 

*-st[^-'(^)-«-« 
tt=l,s;=l L \ / . 

>0, 

where A is the net rate of entropy production. Here we have assumed that each 
constituent in each phase undergoes only simple thermodynamical processes, e.g., 
the entropy flux is proportional to the heat flux. As a result, using (12), the entropy 
inequality can be rewritten as 

a=l,s;=l L x / 

+ 

1   ^/ 
+y^a£ + ^qi-vr + -(Ej + ßJ)-4!-iS >o, 

where we have performed a Legendre transformation to eliminate E]
a in favor of 

the Helmholtz potential, AJ
a. 

Recall that the bulk phase variables are defined so as to obtain bulk phase field 
equations which resemble the traditional form of the field equations. The various 
relations between the phase and species properties are [2, 39] 

N N N N 

P<* = E P«'     7a = E"%' P"ya = E piy» = A* E c«v< 
7=1                  ;=i 7=1              ;=i 

N N 

*- = E^ - P«< ® °i)> f« = E(f i + *>«>' 
7=1 >=1 

(13) 

(14) 

% = Ec«r?«'    A« = EC«A«' 
7=1 j=l 

^ = Ec«(^ + ^-<)' 

(15) 

(16) 

(17) 
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N    r 

e« = E 
;=i 

Qj + Tj ■»i+?i(Ej
a- Ea + \<-u{ 
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(18) 

where r)a and Aa denote the entropy and free energy of phase a, respectively, and 
® denotes the tensorial product between vectors. 

In addition, we have the following constraints [2, 39]: 

N N 

2> = i,    Ec« = 1>    E»i = o, 
or=l,s 

N N N 

a=l,s a=l,s 

,N, 

N. 

(19) 

(20) 

(21) 

(22) 

(23) 
Of=l,S 

Relations (19) are a consequence of the definition of the variables. Restrictions (20) 
are a result of summing the balance laws over each constituent and requiring the 
bulk phase to satisfy the balance laws. Restrictions (21)-(23) are a consequence 
of assuming that the interfaces have no thermodynamical properties, e.g. the mo- 
mentum transfer from the liquid phase to the solid phase is the same magnitude as 
that from the solid to the liquid phase. 

Expressing the entropy inequality in terms of phase properties and using (13)- 
(23) we have 

v^ /DaAa DaT\  , 

~=l,s x 7 

-^eada:(ta+f]pX®uA + X;EeaVui:(^-^Ail)- 
a=l,s ^ j-\ '      a=l,sj=l 

o=l,s 

N 

ar=l,s j=l 

+ Elvr 
a=l,s 

[q* + E[PX(^ + \< • <) - «]} 
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- E YsiiU • w - \< ■ w) -«U - ^+^i,s • vu) > o, 
«=I,sy=l       ^ ' V ' 

(24) 

where ViiS = V] — vs denotes the relative velocity, I denotes the identity matrix, and 
the following relation has been employed 

<*=l,s 7=1 

N 
= E£^ + EE &(A« - w+v • fe.pi4W)i- 

a=l,cr at=l,s j=l 

3.   Constitution 

In this section, we assume the material is a swelling colloid. We focus our dis- 
cussion on clay, but the results can be applied to other swelling systems, such as 
lyophilic polymers. The clay systems we have in mind are smectic clays such as 
montmorillonite. We assume the clay systems can be described as an assemblage 
of mineral platelets, forming the solid phase, and vicinal water, forming the fluid 
phase. This system may swell under hydration and shrink under desiccation. 

The unknowns in our system are: 

e\, Pa, CJ
a, va, \

J
a, T, (25) 

-A<*> Aa, T]a, r)a, la, ta, l\, lj, e\, ßj, qa, (JQ,, 

X, Qu   Q{, Ei,        j = l,...,N-l,    a = l,s. (26) 

Note that since we only consider N -1 constituents, the above variables are indeed 
independent. To arrive at a system which has the same number of equations as 
unknowns, we consider the last two rows of variables (26) to be dependent, or 
constitutive. These variables are assumed to be functions of a set of independent 
variables which we henceforth denote as the constitutive independent variables. 
However, even with these constitutive variables a careful count indicates that there 
is still an additional unknown for which there is no corresponding equation. Mak- 
ing a comparison with classical mixture theory for a single phase, we see that the 
volume fraction is the variable unaccounted for. Thus, there is a problem of closure 
associated with the loss of information in the upscaling process. One way of closing 
the system is to assume the solid phase is incompressible (e.g. Dsps/Dr = 0) 
[42]. However, we are interested in more general results so that these ideas can 
be extended to more complicated systems, such as systems with more than two 
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bulk phases, or a system for which interfacial effects cannot be neglected. One 
popular method, introduced first for granular media in [36] and generalized in 
[67] is to postulate another balance law, called the 'balance of equilibrated forces'. 
Eventually constitutive relations must be postulated for these additional terms. In a 
fashion similar to this approach, Aifantis and co-workers have suggested that there 
should be additional balance equations for all internal variables [5, 77]. Again the 
system must be closed by introducing additional constitutive variables. 

Although some nice results have been obtained using this approach, we have not 
chosen to close our system of equations in this manner for several reasons. First, the 
additional balance equation has no microstructural origin. Within HMT all balance 
equations are upscaled from the microscale. Not relating each additional variable to 
a microscale counterpart has resulted in confusion as to the physical interpretation 
of these variables [4]. Further, many of the physical interpretations attributed to 
the variables in the additional balance equation correspond to terms within the 
original macroscale balance laws, especially if one includes the interfacial balance 
equations as well. Lastly, we feel the system should be closed by a constitutive 
relation. The change in the volume fraction is a consequence of the constitution of 
each phase of the porous media, as well as the state of each phase. 

Although we feel this issue needs to be examined more closely, the closure 
method we feel most comfortable with is that of postulating a constitutive relation 
for the material time derivative of the volume fraction, which was first introduced 
in [21]. Note that this method of closure can be viewed as a simplified version of 
adding an additional balance equation; within the additional balance law for the 
volume fraction, if it is assumed there is no external supply of the volume fraction, 
all variables except for the time rate of change of the volume fraction are considered 
constitutive. Thus, there is a relation between the aforementioned closure method 
and this one. Additionally this closure approach allows the derivation of results 
which had only been previously heuristically derived [2]. 

We assume the macroscopic medium is nonheat conducting, the macroscopic 
fluid is nonviscous, and the fluid and solid phases are compressible. By the Prin- 
ciple of Equipresence [76], we assume that every constitutive variable is a function 
of all the following macroscopic constitutive independent variables: 

T, pa, E„ vI>s, u£, C]
a, VCl, VA*, VES, 

j = 1,... ,N-l,    a = l,s, (27) 

where Es is the macroscopic strain tensor of the solid phase defined by 

1 

2' 
in which Fs = gradxs denotes the deformation gradient (with grad denoting the 
differentiation with respect to a macroscopic material particle). Here we have im- 
plicitly assumed the constitutive variables are local functions, that is, the value of 
each constitutive variable is determined by the values of the constitutive independ- 
ent variables at that same material point, so that there is no nonlocality in space. 

Es = ^(FfFs-I), (28) 
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With this assumption, the variables and their gradients (27) can be considered in- 
dependent, since it is possible to have different processes which at a single point 
can have e.g. the same strain but varying gradients of the strain. As we shall see in 
the next section, including the gradient of the strain tensor in the list of constitutive 
independent variables is crucial for deriving a proper form of Darcy's law for the 
vicinal fluid. 

The macroscopic strain is a measure of the solid phase geometry, so by includ- 
ing Es and VES in the list of constitutive independent variables, we assume that 
the behavior of the system is partially dictated by the separation and distortion 
of the solid platelets and their spatial variations. Moreover, although both ei and 
Es could be considered as independent variables [11, 13], Es is closely related 
to si through the continuity equation, especially if the mass transfer of constitu- 
ents between phases is negligible (see Section 8), so that we choose to include 
only Es as an independent constitutive variable. In addition, u£ and C% are not 
considered independent variables since they are coupled with other independent 
variables through (19). 

To simplify manipulations of the entropy inequality, we use Liu's Lagrange 
multiplier technique [52]. We first choose to view conservation of mass equations 
as constraints which are weakly enforced in the entropy inequality using scalar 
Lagrange multipliers, Xa and \{. We further use Lagrange multipliers to enforce 
the relationship between Vu£, j = I,... ,N obtained by differentiating (3). This 
approach differs from the more commonly used method which involves eliminating 
Vu^ directly via (3) [2, 14, 39]. The two techniques give identical results, but 
this procedure provides a more systematic method, simplifying the manipulations 
required to exploit the entropy inequality. Let T^ denote the second order tensorial 
Lagrange multiplier corresponding to the constraint on Vu^. The superscript TV is 
carried to remind us that we view the constraints as restrictions on u„, that is they 
depend on the labeling of the constituents. 

Let A0id = A of (24). Modifying the entropy inequality we get 

TAnew = FAoid + 2^ K I —^ + £<*A*V • \a - 7a | + 

a=l,s a=l,s        L 

a=l,s j=\        L 

N 

>0. + Ee«r«: £V<«M> 
a=l,s 

Next we invoke the theorem of Liu [52], which states equivalence between the 
entropy inequality with restrictions and the modified entropy inequality above. 

To simplify the quantity of algebra which follows, we deviate slightly from the 
axiom of equipresence [33], and assume the Helmholtz free energy densities of the 
phases depend only on a subset of the set of constitutive independent variables. It 
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can be shown that if it is assumed the Helmholtz free energies are a function of all 
constitutive independent variables listed in (27), that the exploitation of the entropy 
inequality requires that both energies are not a function of vliS, u

J
a, Vp{, VC^, and 

VES. Here we additionally assume that the liquid free energy is not a function 
of ps and C(, and likewise that the solid free energy is not a function of p\ and 
C{. Incorporating these additional dependencies still produces the results presented 
herein if one slightly modifies the thermodynamic definitions of the pressure and 
chemical potential [13,11]. For the system under consideration it is thus postulated 
that 

■As — AS(T, ps, Cs, Es) ^29) 
A,  = MT, A, C{, Es),     j = l,...,N-l. 

By assuming the liquid phase energy as a function of the solid phase strain tensor, 
we are adopting the framework of [13, 65] in order to allow the adsorbed liquid 
structure to be a function of the separation and shear strain of the macroscopic 
solid phase. Recall that the definition of vicinal or adsorbed water is water whose 
properties vary with the distance from the solid phase. In an ideal case, in which 
the solid phase is composed of flat parallel platelets, the adsorption of additional 
water causes the platelets to move further apart, changing the properties (density, 
viscosity, etc. [56] of the vicinal fluid. This change is represented by the strain 
tensor which, by definition, is the strain of the 'smeared out' solid phase. So as the 
platelets separate, the solid phase strain tensor is altered. Similarly, if the platelets 
are sheared relative to each other, this again affects the strain tensor. This is a 
generalization of the work [2] where it was assumed that the liquid phase energy 
is a function of £\ instead of Es. In Achanta's work, an empirical result for the 
swelling pressure obtained in [56] was derived for the first time using this con- 
stitutive assumption and the exploitation of the entropy inequality. The derivation 
of this result in our formulation is presented in Section 7. In the more general 
theory considered here, we are assuming that the Helmholtz free energy of the 
adsorbed liquid is not only a function of the separation of clay platelets, but also of 
the shear strain of the macroscopic solid phase. By including shear strains, we are 
attempting to capture the behavior of clay soils at low moisture content (interlayer 
spacings less than 10 molecular diameters of water or 25) where the behavior of the 
microscopic vicinal water may be neither liquid-like nor solid-like, but glassy [26, 
47, 70]. In this state the fluid molecules are more ordered and are layered parallel 
to the surface so that the fluid, on the microscale, is structured, inhomogeneous, 
and anisotropic. The interlamellar fluid is relatively immobile due to the higher 
viscosity, allowing the fluid to support a shear stress. 

To complete the set of definitions, we introduce the thermodynamic pressures 
(pa), the Gibbs energy density of the a-phase, Ga, the chemical potentials of 
the ;th component relative to the JVth component in the a-phase (/xj) [19], the 
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classical effective stress tensor (tf) in the sense of [74], and the hydration stress 
tensor (tj.) [13, 65]. Within the current framework they are defined as follows: 

Pa = pl^    Ga = Aa+p-lpa, (30) 
dpa 

dAs   j.       i 3Ai   j> tl=PsFs°4iFT t/=p/Fi^Fr, (3D 

ßi = ^,    a = l,s.   j = l,...,N-l. (32) 
dCJ

a 

The definition of t* is analogous to the Cauchy stress tensor for an elastic medium 
[33] although applied to a porous skeleton. In soil mechanics this stress tensor is 
referred to as the Terzaghi stress tensor. The hydration stress tensor, t\, is novel, 
and is a result of the physico-chemical forces between the vicinal fluid and the clay 
minerals. 

The Coleman and Noll method [25] is now used to exploit the restrictions placed 
by the entropy inequality on the constitutive theory. Within this framework the 
total derivatives of the free energies are rewritten in terms of partial derivatives 
using the chain rule and the functional forms postulated in (29). Using the relations 
Di/Df = Ds/Dt + Vi,s • V and DSES/Dt = F[dsFs [33] and the above definitions 
we then have 

D,A,    aw+4M + £ ~^ + it,:ds+Vi ,.(M!:w,) 
pf Dt      *ri        Df       pi \öEs       / Dt        dT  Dt       pf 

and 

y=i 

"-1       r. r^J DSAS      dAs DST      Ps DsPs     '^„j DsCs
7       1  e 

where the term in the parenthesis in indicial notation is (dA/dEij)Eijtk in which 
repeated indices imply summation and a comma denotes a partial derivative. 

To minimize the required algebra, we restrict our analysis to the case where tem- 
perature gradients and heat fluxes are absent. Using the above expansions entropy 
inequality (24) can be rewritten as 

a=l,s ^ '       a=l,s 7 = 1 

- E * * w{w+%)+eidl: (t]+Ml1+?pju{ ® u0 + 

/ N        \ 
+esds : (ts + PsKl ~ *s " J-4 + E M ® «s J + 

;=i 
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+vi,s • f-ei-Vp, - E W/VC/ " e"°i 9EJ 
: VEs + eiXlVpi+ 

+ E eiPiA/VC/ + piXiVei - f i J + 

+^(PIA, - Psxs) + E E e«Vu«: (t«+p3«^« - A«)l+p«r*} + 

a=\,sj=l 

N 

+ E E u« • I We«P«> - V(e«p^i) - Cg + T£) + £ar^Vpi] - 
a=l,sy=l 

N . N-\ x 
-E^(^-^ + A2)-'e,fxi-As+E(Cs^-C/^) + ^i-^j>0, 

;=1 J=1 (33) 

where ^ and X% are defined to be zero for notational convenience, and where 
A2 = (1/2)(u/ • u{ + vi,s • Vi,s - Us • Us)- Note that because the restriction asso- 
ciated with the Lagrange multiplier rj, Vu£, j = 1,... , N, can be considered 
independent when exploiting the entropy inequality. However, uJ

a, j = 1,... , N, 
may not be considered independent. 

4.  General Nonequilibrium Results and Two Definitions for the Afth 
Chemical Potential 

As usual, A is a linear function of the following set of variables which are neither 
independent - set (27), nor constitutive - set (26), and thus are arbitrary: 

DsPa    DsQ     DsT 
~DT'     Dt   '    Dt '     "'       °" 

where j = 1,... , N - 1 for DsC£/Dt and j = 1,... , N for Vu£. Note that the 
index on Vu^ ranges from 1 to N because we have used a Lagrange multiplier to 
enforce the relation between these variables so that we can consider them to be 
independent. In order to satisfy the entropy inequality for all possible processes, 
the coefficients of these variables must be identically zero. This yields 

Xa = ^, (34) 
Pa 

K = tt>    j = h...,N-l, (35) 

E ««A. (^ + tla) = 0, (36) 
a=1,s ^ 
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N 

t, = -p,I-^/o/u/®u/, (37) 

t, = -pJ + tJ + ^tl-^p/««/®oi, (38) 

K^PIKI-P&il-PIT1:,    j = h..-,N. (39) 
Equations (34) and (35) determine the Lagrange multipliers. If any phase or con- 
stituent is incompressible, then there is no equation for the corresponding Lagrange 
multiplier, and it becomes an unknown of the problem. For the remainder of this 
paper, we will replace the Lagrange multipliers by their corresponding definitions 
given in (34) and (35). Equation (36) is a classical result stating that entropy and 
temperature are dual variables [23]. The macroscopic stress tensor for the vicinal 
liquid (37) is, in a first order theory, a scalar multiple of the identity. Note that 
if VES had not been included in the list of independent variables, then it would 
have been included in the above list of variables which are neither independent nor 
constitutive. This would have resulted in the conclusion that A\ is not a function of 
Es, and the above results could only be used to model nonswelling porous media. 

Equation (38) gives important insight into the behavior of the stress tensor for 
the swelling particles. If we introduce the total stress tensor t = ests -Miti and total 
thermodynamic pressure p = £\p\ + esps, then by using (37) and (38) we obtain 

N 

t + pl = e,t's + est
e

s - E E s^< ® < (40) 

a=l,s j=\ 

Equation (40) is a modified Terzaghi's effective stress principle for swelling clays 
which incorporates the effect of hydration stresses. It states that the equilibrium 
part of the stress tensor for a swelling medium is composed of both the classical 
effective stress tensor in the sense of Terzaghi [74], t*, and an additional stress, t\, 
which accounts for the stress in the adsorbed water due to hydration forces. The 
effective stress tensor, t*, measures stresses induced by solid-solid interaction and 
hence is the dominant factor when considering nonswelling systems such as sands, 
silts, and low and medium plastic clays such as kaolinite or illite. On the other 
hand, tj. dominates when there is a significant amount of solid-fluid interaction, 
such as swelling particles. Clearly this additional stress component is due to the 
presence of physico-chemical forces arising from surface hydration. Whence, as in 
[13,65], we term the coupling tensor t\ the 'hydration stress tensor'. Other attempts 
to obtain the hydration stress tensor have been primarily heuristic [46, 51, 62,73]. 

Equation (39) relates the chemical potential to the stress tensor of the compon- 
ents within each phase, t£. One consequence of (39) is that by letting ;' = N we 
obtain the definition of the Lagrange multiplier, F% 

r" = AN\ _ J_t" (41) 
Pa 
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But more importantly, Equation (39) illustrates that applying the Coleman and 
Noll method only yields results relative to the Nth constituent. This is due to 
the interdependence of the concentrations (19). In order to derive more specific 
results, a definition for the absolute chemical potential must be postulated, and this 
strongly affects the form of the final results. This procedure is mostly avoided in 
classical and statistical thermodynamics because extensive variables, namely the 
number of molecules of each constituent, are used as independent variables instead 
of intensive variables (concentrations). 

We believe the appropriate definition of the absolute chemical potential within 
mixture theory needs to be carefully examined. Indeed, one can find a variety of 
definitions in the literature. Here we mention a few. In terms of our notation, Kre- 
mer et al. [50] define the chemical potential at equilibrium to be d(paAa)/dpa for 
fixed vibrational energy. In [4] the chemical potential is defined to be d(C]

aA{)/dC]
a. 

Probably the most popularly used definition is the tensorial definition of [19, 22] 

vJa = All-ljtl,    j = l,...,N, (42) 
Pa 

see, e.g., [2, 39]. To determine the most appropriate definition, a criteria must be 
established, and we believe that the criteria should be that the macroscale chem- 
ical potential should have the same properties as that of the classical Gibbsian 
chemical potential. Further, these properties should be consistent with the entropy 
inequality. 

In classical Gibbsian thermodynamics, the chemical potential is defined to be 
the change of the total extensive Helmholtz potential, A, with respect to the number 
of molecules of constituent j, nj, keeping temperature, volume, and the number of 
molecules of all other constituents fixed, i.e. dA/dnj\TVn! [24]. In this setting, the 
chemical potential has the following properties [24]: 

(1) It is a scalar quantity representing the amount of chemical energy required to 
insert/remove a molecule of constituent j (by definition). 

(2) At equilibrium, the chemical potential of a single constituent in different phases 
is the same. 

(3) The chemical potential is the driving force for diffusive flow. In particular, at 
equilibrium the gradient of the chemical potential is zero. 

Note that the above properties do not imply that at equilibrium the chemical po- 
tentials of two different constituents are the same, an error commonly found in the 
literature. It is especially important that property 3 holds, as it is the property used 
to indirectly measure the chemical potential [24]. 

Of the definitions given above, only Bowen's arises naturally within our frame- 
work. In fact, using Bowen's definition (42) we get from (41) and (39) 

vj^r?, (43) 

Kl-vJ-v;, (44) 
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respectively. By multiplying (42) through by C{ and summing on ; from 1 to N, 
we find that 

£CX = AJ--U, (45) 
.   . Ha 

J 

where we have used the relationship between the phase stress tensor and partial 
stress tensors in (14) and neglected second order terms involving diffusive velocit- 
ies. This definition for the chemical potential seems to be motivated by convenience 
and is not easily reconciled with the classical definition, which is a scalar. Although 
for a single constituent liquid, the classical scalar and Bowen's tensorial definitions 
agree, i.e., Vi = fx\l = (pi/pi + >4i)I, the question remains as to how to interpret 
this tensorial quantity in the solid phase, which, according to classical statistical 
theory, is physically interpreted as a measure of the amount of chemical energy 
required to place a particle in the system (property 1, see also [61]). Indeed, we 
will show that Bowen's tensorial chemical potential definition is not reconciled 
with classical properties 1-3 when considering a stressed solid phase. This has 
caused some problems with measuring the tensorial stress tensor [8,69]. 

Alternatively, by defining the chemical potential slightly differently, we can 
reproduce in form classical Gibbsian results. To this end, note that beginning with 
the relationship between the stress tensors of the components and phases, (14), and 
eliminating £jLi t£, ta, and T^ using (39), (37, 38), and (41), respectively, gives 

-^ = (lPl + Al-±crß;-A?y 

This tells us that the left-hand sides of the above equations are scalar multiples of 
the identity. By using (39) we can show that the above quantities on the left-hand- 
side are scalars for all j, j = 1,... , N. With this as a motivation, define the scalar 
chemical potentials 

..jj _    AJJ ]_J (46) 

pJlszAil-ljtl + Uti + ^A     j = h...,N, 
pi Ps\        £s   / 

(47) 

where we have used the nonbold symbol, [iJa, to distinguish it from Bowen's tensorial 
chemical potential which we continue to write in bold face. Multiplying (46, 47) 
by CV and then summing on ; gives us the relationship analogous to (45) 

N 1 
Y\C{iLi = Au + —pa = Ga,    a = l,s, (48) 
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where definition (30) for Ga has been used. Moreover, if we define the pressure of 
the ;'th component, p^, as 

(49) 

then (46) and (47) can be expressed as 

Ai + —jPJa = vL    a = l,s, 
Pa 

which shows consistency with (48). Summing (49) over all components and com- 
paring with (48) implies pa = ^JL, pJ

a so that in particular, this gives us an 
alternative way of interpreting ps. 

Comparing the two definitions of the tensorial and scalar chemical potentials 
(42), (46, 47), we arrive at the following relationships: 

n{l = v{, (50) 

ßJl-vJ = L(tt+
SJ-A    j = l,...,N. (51) 

Ps V es    / 

For future reference, if definition (32) is combined with the above result and (44), 
we obtain the relation 

Uil = ^1« vi - vN
a = Uii - <)I, (52) 

aCa 

which is also obtained by using the interdependence of CJ
a, j — 1,... , N and the 

chain rule [28]. If one assumes a priori that the absolute chemical potential satisfies 
(52), then it is only necessary to define the Nth chemical potential, which is a much 
weaker postulate than the assumptions presented in this section. Furthermore, note 
that the difference between the tensorial and scalar chemical potentials (51) is due 
to the effective and hydration stresses. If, for example, the solid phase is replaced 
by another immiscible fluid, we would get equality between the two definitions. As 
we shall illustrate in next section, the right-hand side of (51) plays a crucial role 
in the deviation of the tensorial chemical potential from classical Gibbsian results. 
Also note that constitutive theory for a granular media falls out naturally by setting 
t[ = 0. In this case the difference between the tensorial and scalar definitions are 
only due to the effective stresses, t*. 

5.  Equilibrium Restrictions 

For the system under consideration, equilibrium is defined when Ds£i/Df, Vi,s, 
u£, e{, ex vanish for ;' = 1,... ,N - 1. It is postulated that at equilibrium en- 
tropy is maximum and entropy generation is minimum. Therefore, we must have 
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(dA/dza)e = 0 and (d2A/dzadzb)e positive definite where za and zb denote any of 
the above set of variables. Before applying these conditions, it is necessary to re- 
write the term in entropy inequality (33) associated with u}

a, j = 1,... , N in terms 
of independent variables uJ

aJ = 1,... ,N - 1. To do so, we use the following 
result obtained by using restriction (3): 

N N~l        / CJ      \ 

where wJ
a is the vector representing the coefficient of uJ

a in (33). Using (41) and 
(35) we can now express this term as 

N-l 

ci + ^(?+f»)-M>(§)}. 
We thus obtain the following results which hold at equilibrium: 

P\ = Ps, 

Tx-p{Vex    e,p,aE  : VES, 

V • sap
]

a Uil - (Ai - A?)I + 1 p.'VJ 

ßiJ = Ä 

= SaPi^Ui, 

N 

(El + A]\ _ J2 c/V + yf = ( EL + A,)i - J2 cw + v?, 
A? 

(53) 

(54) 

(55) 

(56) 

(57) 

where we have used the definition of the Lagrange multipliers given in (34) and 
(35). Further, we used the momentum equation for species, (10), at equilibrium 
in the derivation of (55), and Equation (44) was used in the derivation of (57). 
Relation (53) states that at equilibrium, the thermodynamic pressures of the two 
phases are equal. Relation (56) resembles in form the classical Gibbsian result 
stating that at equilibrium, the chemical potentials of a single constituent in two 
phases are equal, although it is not yet in the sharpest form since it is expressed 
only in terms of the relative chemical potential. Expression (57) gives a relationship 
between the Gibbs energy and the weighted sum of the chemical potentials. To 
obtain a more physically intuitive interpretation for (54), begin by eliminating Ti 
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by using the momentum equation for the liquid phase (11), and then eliminate tj 
using (37) to get 

V/>, - p,g = -p^ : VES. (58) 

This shows that in contrast with a bulk liquid, the vicinal fluid does not satisfy the 
classical hydrostatic relation Vp\ = p\g. This result will be exploited in the next 
section to obtain a modified form of Darcy's law for the vicinal fluid. 

Using (39) to eliminate Va in (55) yields 

V% = VQil -/*?) = V • (vj - vj) = 0, (59) 

where (52) is used for JtJa. This resembles the classical Gibbsian result stating that 
at equilibrium, the chemical potential is constant, but, similar to (56), it is expressed 
only in terms of the relative chemical potential. 

We now use the two definitions of the chemical potential to obtain nonrelative 
results corresponding to (56) and (59). The non-relative results corresponding to 
(57) are given by Equations (45) and (48) for the tensorial and scalar definitions, 
respectively. 

Eliminating the stress tensors in (45) using Equations (37) and (38) at equilib- 
rium, and then eliminating XwLi ^Lvi an(^ v\ ~ vf usmg (57) and (56), respect- 
ively, gives, in terms of the tensorial chemical potential, 

N. (60) 

To get the equivalent expression in terms of the scalar chemical potential subtract 
(51) from (50) and combine this result with (60). This yields 

ßl=p{,    j = l,...,N, (61) 

which tells us that the scalar chemical potential satisfies the classical Gibbsian 
result stating that the chemical potentials of a single species in two phases are 
equal at equilibrium. In contrast, when the solid phase is stressed, (60) indicates 
the macroscale tensorial chemical potential does not recover the classical result. 
This is due to the definition of the macroscale tensorial chemical potential, (42), 
and in no way should this be applied at the microscale. We may interpret the right 
hand side of (60), the effective and hydration stress tensors, as being an external 
source. It is nonzero, for example, when an external load is applied to the medium. 
Also note that if the solid phase is replaced by, e.g., another immiscible fluid we 
would get, by following the same procedure, equality between the two tensorial 
chemical potentials. 

We now turn to the derivation of the absolute form of (59). This requires the 
derivation of an extended form of the Gibbs-Duhem relation for the vicinal fluid. 
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To this end, begin by taking the gradient of the constitutive assumption for A\ (29). 
Using the chain rule and the constraint ]Cj=i Q = 1 we get 

= ^A + |>/^+i|i:VE,. (62, 

By taking the gradient of (48) and setting a = 1 we also have 

1 N 

VA, = -^Vp, - -Vp, + YiCiV/x/ + ßiVC/'). (63) 
(A)2 A j^ 

Eliminating VA\ via (62) and (63) and using equilibrium result (58) yields 

JT clVnl = i VPl + |£ : VES = g, (64) 

which is the Gibbs-Duhem relation for the vicinal liquid. This relation can be used 
to obtain a sharper form of the relative result (59). By multiplying the scalar version 
of (59) by C{ and summing over all constituents, we find, by using the above result, 
that V^ = g. Combining this with (61) and (59) gives 

V/4'=V^=g,    j = l,...,N. (65) 

The above result provides a sharper description of equilibrium condition (59) and 
shows consistency with the classical result of Gibbsian thermodynamics which 
states that in the absence of gravity, the scalar chemical potential is constant at 
equilibrium. The corresponding result for the tensorial chemical potential can be 
easily obtained by combining the above expression, (65), with (50) and (51): 

W = g>   V'VJs=g \i{<+$\ (66) 

which confirms that in the absence of gravity, Bowen's tensorial chemical potential 
for the solid phase is not constant at equilibrium. 

By incorporating the effective and hydration stress tensors into the definition 
of the scalar chemical potential in the solid phase (47), we have in some sense 
incorporated an 'external' source. Physically, both ßJ

a and (l/3)tr(v^) may be 
interpreted as the amount of chemical energy required to place a particle into 
the system. But we must keep in mind the slight difference between them, that 
is that the scalar definition incorporates the amount of energy associated with 
tr(tg) + (£i/es)tr(t|.). When viewing the hydration and effective stresses as a source 
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term, we see that the scalar chemical potential is analogous to the well-known 
'gravi-chemical potential' of classical thermodynamics whose definition incorpor- 
ates the energy due to gravity. In Section 8, we shall illustrate this analogy with 
some examples. 

6.  Near-Equilibrium Theory 

To derive near-equilibrium results, the coefficients of Ds£i/Dr, uJ
a, vi,s, e£, ea in 

entropy inequality (33) are linearized about the above variables since they van- 
ish at equilibrium. Strictly speaking the coefficients should be linearized about 
all variables of the above set [2, 39]. However, here we pursue the approach of 
[14] and choose to linearize only about the one variable which gives a positive 
quadratic form in the entropy inequality. So for example, if z is a variable which 
vanishes at equilibrium and / is the coefficient of z within the entropy inequality, 
the linearization procedure gives an approximation for the near-equilibrium value 
of / as, 

/neq^/eq + Cz, (67) 

where C is the linearization constant. Using this procedure for the coefficients of 
DsS)/Dt, vi,s, and e^, we have 

Ds£i 
Pi ~ Ps = ß* Dt 

(68) 

PxVex - elP]^ : VES - f i = *iv1>s, (69) 
dJbs 

ft - ft = K*ei    j = l,...,N-\, (70) 

where /u,*, Rh R
J

a and Kj are material coefficients which may be a function of the 
independent variables which are not necessarily zero at equilibrium. 

The above relations are nice in some sense because the term /eq is zero. This is 
not true of the coefficient for uJ

a, so for this case it is necessary to do some further 
manipulations. Consider the term involving u£ in entropy inequality (33). Eliminat- 
ing the Lagrange multipliers using (35) and (43), and adding Y!JM 

u«[Piva V£«], 
which is zero by constraint (3), we have 

N 

E E °i • W^ißaPÜ - v?V(eap>) - V(eapiAl) - (g + ¥>) + 
a=l,s 7=1 

+ eav»Vpl + piv» ■ VeJ 

N 

= E E< • WWeafi) - V(e«pl4) ~ <S + Ti)]. 
a=l,s j=\ 
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Linearizing this term about equilibrium using (67) and eliminating Va + TJ
a using 

momentum Equation (10) we have 

Jneq [viV(eaPi) - V(eapiAi) + V • (eat£) + eapie]t 

= [vJ
aV(eapi) - V(eap

J
aAi) + V • (eat£) + c^g]«, + H*L> 

where RJ
a is the linearization constant which in general is a second order tensor and 

where we have assumed the inertial term in the momentum equation is negligible 
near equilibrium. Using (42) to rewrite this expression in terms of the tensorial 
chemical potential yields 

{Sap
}

aV ■ VJ
a + Sap

J
ag)ntq   = (-Sap

J
aV ■ K + £«pig)eq + K<- 

At equilibrium we can use (66) so that we obtain generalized Fick's laws, 

R{u{ = -£ip/(V • v/ - g), 

R{vi = -*sP/(V • v{ - g) - esC(V ■ (tf + |tf),    j = l N. 

Riui = -eapi(Vßi-g),    j = \ N,    a = l,s, 

that is a form of Fick's law which is identical in form to the statistical thermo- 
dynamical result [80]. Note that this is a much sharper result than what has been 
previously obtained, (1). The coefficients RJ

a must be such that the constraint on 
the diffusive velocities, (19), is satisfied. This extends to swelling media the results 
of [14] where a macroscopic form of Fick's law involving the absolute chemical 
potential gradient was derived for granular media. The above results are consistent 
with equilibrium relations (65) and (66) and in particular, indicate that stressing the 
solid phase affects the diffusive velocity of solid constituents. 

Equation (68) tells us that near equilibrium, the thermodynamic pressure of the 
vicinal fluid and solid phases are not necessarily equal, especially for colloidal 
systems. The coefficient /x* may be thought of as a retardation factor which among 
other effects, accounts for the re-ordering of the water molecules as they are dis- 
turbed, that is an entropic effect. If this is the only source of retardation, then it 
follows that for a granular media, //,* « 0, since there is very little ordering of 
the liquid phase in such a medium. We remark that an equation identical to (68) 
with ps = 0 was heuristically derived and used in polymer physics [75] and in 
the mechanics of thin films [49]. In this latter reference the authors discuss the ap- 
pearance of a viscous disjoining pressure component due to the excess in viscosity 
of the thin liquid film relative to the bulk phase [66]. Furthermore, using (68) in 
expressions (38) and (40) for ts and t, respectively, we obtain the near-equilibrium 
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relations, 

Pi + wJ^) I + e.tj + eit1, - J2 Ee«p«< ® < 
/ /V=;l   C    1 = 1 a=l,s y=i 

The above result can be viewed as a near-equilibrium modified Terzaghi principle, 
which in our notation can be stated as t = — pil + £stf. Note that though the solid 
is considered elastic, the appearance of the retardation factor in (68) leads to a 
viscoelastic behavior for the volumetric stresses. 

By neglecting inertial effects and using analogous arguments to those which 
gave rise to the vicinal fluid hydrostatic relation (58), Equation (69) leads to the 

modified Darcy's law 

-*ivi,s = -V/>i - piT^r : VES + pig. 
E\ 3ES 

In addition to a pressure gradient, the above form of Darcy's law contains a gradi- 
ent of a generalized interaction potential which accounts for flow of vicinal water 
induced by the deformation of the clay particle. The appearance of this additional 
term indicates that strain gradients provide a potential for vicinal water flow in a 
swelling medium. If vicinal water flow due to particle shearing is neglected, then 
this interaction potential reduces to (p{dA\/ds\)Vex, as was shown in [2, 64] by 
positing Ai = A\(T, p\,sh CJ) rather than the constitutive dependency of (29). 
We also remark that an extended form of Darcy's law for multiphase flows which 
incorporates an interaction potential was first derived within the current framework 
for nonswelling, granular systems in [43, 45]. 

Equation (70) governs the near-equilibrium adsorption/desorption of the jth 
component by the solid phase. The coefficient Kj may be identified with the kinetic 
constant of linear chemical adsorption [60]. Since it is expressed in terms of the 
relative chemical potentials, we turn to the task of sharpening it. To this end, we 
begin by rewriting thee"/ term of entropy inequality (33). Neglecting higher order 
terms near equilibrium (i. e. A2) we have 

]=\ ;=i ;=i 

Note that by using (61), we can show that each coefficient (given in parenthesis) is 
zero at equilibrium. The last coefficient is independent of j, so it will contribute to 

the coefficient ofei in the entropy inequality (recall that £JLi ejf = ßi)- Linearizing 
the remaining coefficient using Equation (67) yields 

Kj7{=ßi-ixi,    j = l,...,N, 
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which is the absolute form of the near-equilibrium adsorption/desorption relation 
in terms of the scalar chemical potential. Again using (50) and (51) to express the 
adsorption law in terms of the tensorial chemical potential we obtain 

Kfäl = vi-v{ + U$ + 2-A    j = h...,N, 
Ps \ fcs    / 

which again emphasizes the recurring theme that replacing the scalar chemical 
potential by the tensorial chemical potential yields an additional source term due 
to t* and t's. This result indicates a stressed solid matrix affects the adsorption rate 
of the constituents. 

7.  Comparing the Chemical Potentials for Selected Examples 

Our goal in this section is to compare the scalar and tensorial chemical potentials in 
selected one-dimensional examples. In doing so we provide a better physical feel 
for the two potentials. In this section we assume there is no net exchange of mass 
between the liquid and solid phases, and that the solid phase is incompressible so 
that Dsps/Dt = 0. 

We begin with Equation (51) which relates the solid phase scalar and tensorial 
chemical potentials: 

ß{l = v{ + i(t: + fL|J). (71) 
Ps es 

To compare the two quantities at equilibrium, we define their scalar difference 

Aß{^l-trv{-ß{. (72) 

Using (71) in (72) gives 

3 ps \ ss      / 

which, when using the definitions of tf (31), t[ (31), and Es (28) yields 

1 dAs 1 e\p\ dA[ 

(73) 

Next we rewrite the above expression for the case in which we assume the free 
energies are independent of the shearing components (or deviatoric part) of Es, 
i.e., for the one-dimensional problem in which the free energy, Aa, depends on the 
volume change of the solid phase. Let Js = detFs be the Jacobian of the solid 

A/x{  =                : Cs ^s           3 3ES      
s 3 esps 3ES 

29AS 

3 3CS 

2 £\p\ dA\ 

3 esps 3CS 

where Cs = F[FS. 
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phase motion, which represents the volumetric change in the solid phase [33]. For 
an incompressible solid, the macroscopic volumetric deformation of the matrix is 
governed by changes in the volume fraction. Therefore, if we denote the volume 
fraction of the reference configuration by es = £s(Xs), we have 

Jtes = es. <74) 

Using the identity (8 J2/3CS) : Cs = 3/s
2 [33], and using (74) leads to 

2 8Aa _  IBA^djl 29Aa _     zdAa dss 

3 acs    
s ~ 3 a J2 acs'  

s ~   s a/2 ~   s des 3J2 

?s dAa        dAa 
-      es-  

Js des ds\ 

Combining the above result with (73) gives 

. dAs      S]pi dAi 
Afi{ = -£s- -—, (75) 

dsi        ps   ds\ 

which is a simplified one-dimensional relationship between the tensorial and scalar 
chemical potentials. The terms on the right-hand side of (75) represent the one- 
dimensional version of the effective stress tensor and the hydration stress tensor, 
respectively. 

To illustrate the effects of the effective and hydration stress components on 
A/u-s, we consider the consolidation of nonswelling and swelling media in two 
one-dimensional examples. But before proceeding to these examples, we consider 
a classical static fluids example with the purpose of setting up an analogy between 
our scalar tensorial chemical potentials and the gravitational classical chemical 
potentials. 

Example 1: Classical Static Fluid Column Problem. 
Consider a static column filled with an incompressible fluid (see Figure 1(a)). 

In this example, we assume the fluid is composed of a single constituent so that its 
classical (scalar) chemical potential is equal to the Gibbs free energy of the fluid, 
G\. We denote the potential function due to both chemical energy and gravity as 
the gravi-chemical potential Gf and define it in terms of G\ to be 

Gf = Gx- f, (76) 

where f is the gravitational potential, i.e. Vf = g. The gravitational potential in 
(76) plays the same role as the effective and hydration stresses in (75). Orienting 
the coordinate system as depicted in Figure 1(a), we set g = g\z, where iz is the 
unit vector along the z-axis. Hence f = gz, where we have set f = 0 at z = 0 (i.e. 
the gravi-chemical and chemical potentials are identical at the top of the column). 
Thus, 

G, - Gf = gz. (77) 
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Figure 1. One-dimensional examples: (a) classical static fluid column, (b) Terzaghi's con- 
solidation column example with components, (c) Low's swelling pressure experiment with 
components. 

Also, since the single constituent fluid is incompressible, (62) reduces to VAi = 0. 
Thus, taking the gradient in (48) and using equilibrium expression (64) yields 

(78) 

VG, = -Vp, = g, 
A 

so that when combined with (77) we obtain 

VGf = 0. 

Results (77) and (78) show that G\ is constant throughout the length of the column 
while G\ must increase linearly as z increases. Consequently, the chemical energy 
required to place a particle in the bottom of the column is greater than the chemical 
energy required at the top due to the gravitational potential. 

We have thus illustrated an analogy between gravity, which acts as an external 
source when using the classical Gibbs free energy, Gh and the effective and hy- 
dration stresses which act as an external source when using the tensorial chemical 
potentials. Keeping these results in mind, we consider the role of effective and 
hydration stress tensors on A/JL( . 

Example 2: Terzaghi's Consolidation Problem 
To illustrate the influence of the effective stress tensor on Aß{, we consider 

Terzaghi's one-dimensional consolidation problem for a nonswelling elastic me- 
dium as described in [74]. In our formulation, these results can be easily reproduced 
by setting t* = 0. As depicted in Figure 1(b), a porous elastic column is bounded 
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on the sides and bottom by a rigid, adiabatic, impermeable wall. At the top, a load 
is applied and the bulk water is free to drain. We consider the equilibrium configur- 
ation and assume each phase contains N miscible components. By neglecting the 
dependency of A] on ei in (75) we have 

Aßi = -*£. (79) 

We assume the porous medium is linearly elastic and neglect gravitational ef- 
fects. If the system under consideration is initially free of stress with a constant 
volume fraction e\, then we can assume the following quadratic form for As [33]: 

1 _ , 
As = -C(£i - ei¥, 

where C is a constant representing the compressibility of the solid matrix. Using 
(79) we then have 

Afi{ = hiv{ - ix{ = -Ce8(ci - e,) « -C(e, - ?,), (80) 

where we have linearized the above expression about equilibrium fa = s{) so that 
C = esC. In addition, we can derive the linear relationship between the effective 
pressure (p*) and volume fraction 

pi = —-trtf = -SsPs—1 = -Cps(ei - fii) 
3 oS\ 

which is similar in form to the one heuristically proposed by Terzaghi. Equation 
(80) can be interpreted physically in a manner similar to the previous example. 
As the overburden pressure is increased, ex decreases, and since fi( is constant at 
equilibrium (see Equation (65)), then tr v{ increases. Hence, the chemical energy 
required to insert a solid particle into the compressed system is greater than at the 
unstressed (initial) state. 

Example 3: Swelling Pressure Experiment. 
To illustrate the influence of the hydration stress tensor, t*, on A/4 we consider 

the classical reverse osmosis swelling pressure experiment of Low [56] or Achanta 
et al. [2]. As depicted in Figure 1 (c), a saturated mixture of montmorillonite clay 
and adsorbed (incompressible) fluid is separated from a bulk (nonadsorbed) fluid 
by a semi-permeable membrane which only allows fluid to pass. An overburden 
pressure is applied to the clay mixture and the shrinkage due to the loss of fluid 
is recorded. As in the previous example, gravity is assumed negligible and each 
phase is assumed to be composed of the same N miscible components where 
the concentrations of some of these components within a phase may be zero. It 
is assumed the clay mineral consists of flat plates and the clay medium is such 
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that the flat plates are parallel so that the effective stress tensor, tj, is negligible. 
Consequently, Equation (75) reduces to 

A^ = _M|dl. (81) 
Ps  Bei 

Next, following Achanta et cd. [2], we will show that, in contrast with the 
previous example, Aß{ appears inversely proportional to the volume fraction, £i. 
Begin by assuming the macroscopic solid phase stress tensor in the clay mixture is 
negligible (ts = 0) so that all the overburden pressure is supported by the adsorbed 
liquid (recall that the total stress is given by ests + eitj). Since we have already 
assumed t?s is negligible, the equation for the solid phase stress tensor (38) reduces 
to 

Pil = -tl (82) 
e, 

where we have used the equilibrium condition ps = p\ (Equation (53)). This tells 
us that the pressure in the adsorbed fluid is balanced by the hydration forces (oth- 
erwise all the fluid would pass through the membrane with minimal applied pres- 
sure). Taking the trace of (82), using definition (31) and using the same reasoning 
as in Equations (73)-(75), we have for the one-dimensional case, 

px = \elm\) = s^. (83) 
3 £s OS\ 

Moreover, by design we have that the concentrations of all constituents are con- 
stant. Since the scalar chemical potentials of the liquid phase are constant at equi- 
librium (Equation (65)) we have that the Gibb's free energy is also constant by 
(48), i.e., 

1 
G\ = A\ H p\ = const. 

A 

Hence, since adsorbed water was assumed incompressible 

dA\ _      1 dp\ 

de) ß\ de\ 

or when combining with (83) 

P, - -.Ä (84) 

Upon integrating and using the condition that when E\ = 1, the pressure in the 
adsorbed fluid, pu is equal to the bulk fluid pressure, pu we get 

pl = El. (85) 
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Combining (83) and (81) and eliminating p\ using (85) gives 

-\xv{ - n{ = A^' = -^ = -■£-. (86) 
3     s     ^s s ps        £ips 

We note that AjU,£ is never zero due to the assumption that there is always some hy- 
dration force between the adsorbed liquid and solid phase. We conclude, contrary 
to the Terzaghi problem, that increasing the overburden pressure, which causes si 
to decrease, results in a decrease in the magnitude of the tr vJ

s • Hence it is easier 
to insert a solid particle into a compressed swelling media. This can be physically 
attributed to the stronger adsorption forces in the compressed system due to the 
closer proximity of the liquid and solid phases. 

As was done in [2], we can rewrite the above result in terms of the separation 
of platelets, k. Denote the thickness of a clay platelet by ks, so that the volume 
fraction can be expressed as 

e, = _A_. (87) 
k + ks 

Using (87), we can express (84) in terms of the separation between platelets as 

At high moisture contents, k « A2 As and hence after integrating we obtain 

px = pfexp(ks/k), 

where the thickness of the solid platelets, ks, is assumed constant. This result is 
identical to the swelling pressure result obtained empirically by Low [56]. Thus, 
by rewriting the dependency of Aßi in (86) in terms of k gives the alternative 
expression 

Pi AßJ
s = exp(Xs/X). 

Ps 

8.   Conclusions 

Within the framework of hybrid mixture theory for multicomponent single-phase 
flow in a colloidal porous medium, we have introduced a novel definition of the 
macroscale chemical potential. Unlike Bowen's tensorial chemical potential, this 
new chemical potential is a scalar which satisfies three properties consistent with 
the classical Gibbsian chemical potential for a single phase medium: (1) it is a 
scalar; (2) at equilibrium, the chemical potential of a single constituent in different 
phases is the same; and (3) the chemical potential is the driving force for diffusive 
flow (generalized Fick's law). After defining this chemical potential, the aforemen- 
tioned properties were derived by exploiting the entropy inequality and using a 
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generalized Gibbs-Duhem relation. Of particular note is that we used a Lagrange 
multiplier to enforce the gradient of the relationship between the diffusive velocit- 
ies (3). Further, near-equilibrium results were obtained by linearizing coefficients 
which were not necessarily zero at equilibrium. This is an extension to what has 
been traditionally done [1, 45] where coefficients of constitutive variables such as 
Dse\/Dt and e1 are linearized about equilibrium. Here we have linearized about 
variables which are not constitutive, but are explicitly related to other independent 
variables, e.g., u*. In fact, one can linearize the coefficient of any variable (inde- 
pendent, constitutive, or directly dependent), using Equation (67); however, it may 
not be trivial to determine the coefficient at equilibrium. It should be noted that 
this philosophy cannot be applied when deriving nonequilibrium or equilibrium 
results, as the argument requires the entropy inequality to be expressed as linear 
combinations of variables which are independent. 

From the entropy inequality, we rederived in a unified manner macroscopic con- 
stitutive results which captured the physics of swelling particles. Principle results 
include: 

(1) A modified effective stress principle for swelling porous media which incor- 
porates an additional stress component (t^) accounting for hydration stresses 
of physico-chemical nature. 

(2) A modified form of Darcy's law governing the flow of vicinal water which 
involves an additional interaction potential gradient accounting for the ad- 
sorptive character of the clay platelets. 

(3) The appearance of a retardation viscosity coefficient (/z*) as a natural con- 
sequence of the topological law [18] used to close the system. Among other 
effects this coefficient led to a viscoelastic behavior for the volumetric stresses 
even though the solid is considered a priori to be elastic. The coefficient may 
provide an important rational basis for the rheology of polymers and thin films 
as it may account for the re-ordering of the vicinal water molecules as they 
are disturbed. In contrast, for a granular media there is very little ordering 
of the bulk liquid phase and consequently, we may expect very little viscous 
behavior in such a medium due to this mechanism. 

(4) Improved forms of Fick's law and the adsorption/desorption relationship betwee 
phases, which are not dependent upon the labeling of the constituents. 

9.  Appendix A. Definition of Macroscopic Bulk Variables 

The following formulas are the relationships between the microscale and macro- 
scale (continuum scale) variables. In previous papers [9, 11, 12, 40], the relation- 

ships are derived assuming small perturbations so that f    —\jf  and f — f    — 
0. Here we have made no such assumptions. 
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~pT(x, t) s —— I   pJ(r, t)ya(r, t) dv(£)    (average mass over 8Va) 
\SVa\ Jsv 

(r//j)a (x, /) =  /   fj (r, t) ya (r, t) dt>(£)    (volume average of property tyj) 
\SVa\ Jsv 

                      If.. 
i///  c-r A—                  /    n'Cr fW/^fr t\v (r t) dv(E) (mass fWMW* <"»f property yfr}). 

pi \SVa\ 
Jw 

A few notes regarding the notation follow. In surface integrals, the unit normal 
outward vector na indicates the surface integral should be evaluated in the limit as 
the aß-interface is approached from the a-side. A    above the variable is used to 
emphasize that the quantity represents a transfer from the other phase or from other 
constituents. 

i          ^ 
Pi  = PJ    . (88) 

CJ = pl (89) 

\sva\ 
£a ~ \8V\ ' 

(90) 

vi s yJ , (91) 

7«-^nf    Pj(yviß-yj)-nada, 
\öV\ JSAaß 

(92) 

H = CaPl^, (93) 

ti = (tJ)a + piyJ
ayi-piyJyia, (94) 

g^r- (95) 

V"    /"     PJ(yviß-yj)-nada, (96) 

X = eaPJ
a(P* +^yT -r£<)' (97) 

(98) El == W + \vi • yja - \yJ
a ■ yJ

a, 

q£ - {qj)a + (tjyj)a-tiyJ
a + 

(99) +PJ
ay

J
a(EJ + \yi ■ yi)  - pJ

ayJ(EJ + \y* ■ v')*, 
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hi^hF + gJ-vJ" -g-vi, (10°) 

\SV\ JsAaß 
V ' 

% ■ f    (V + pjyJKß - yj)) -nada- 
IV \     JSAag  \ / \SV\ 

 i a ■ \ -i- ivj . vJ    — vJ ■ vJ \    C 
PJ(yfJ

aß-vJ)-nada- 

(101) 

|5V| / JSAaß 

lö^l «/SA«,, 

j% = e^ltf'   H-i'-v-/   -ii-v£ + 

+(EJ + ±V • v;')?^ - (£V' + ±W • v-0 r* j, (102) 

tPi^Wr + pivini-pivJvJ , (104) 

fctssfr/", (105) 

$° s 15171 /"    (^ + PV(w4,-^))-n« 

32 = e«pi (W° +^V -rid)> 

(106) 

(107) 

A;UXr (108) a 

Acknowledgements 

This work was supported by the USARO/Terrestrial Sciences under contract DAAL 
03-90-G-0074 and the Army Engineering Waterways Experiment Station under 
contract DACA39-95-K-0056. 



MACROSCALE THERMODYNAMICS AND THE CHEMICAL POTENTIAL 223 

References 

1. Achanta, S. and Cushman J. H.: Non-equilibrium swelling and capalliary pressure relations for 
colloidal system, J. Colloid Interface Sei. 168 (1994), 266-268. 

2. Achanta, S., Cushman, J. H. and Okos, M. R.: On multicomponent, multiphase thermomech- 
anics with interfaces, Int. J. Engng Sei. 32(11) (1994), 1717-1738. 

3. Achanta, S., Okos, M. R., Cushman, J. H. and Kessler, D. P.: Moisture transport in shrinking 
gels during saturated drying, AIChE 43(8) (1997), 2112. 

4. Adams, E. E. and Brown, R. L.: A mixture theory for evaluating heat and mass transport 
processes in nonhomogeneous snow, Contin. Mech. Thermodyn. 2 (1990), 31-63. 

5. Aifantis, E. C: On the problem of diffusion in solids, Acta Mech. 37 (1980), 265-296. 
6. Atkin, R. J. and Craine, R. E.: Continuum theories of mixtures: basic theory and historical 

development, Quart. J. Mech. Appl. Math. 29 (1976), 209-231. 
7. Balzhiser, R. E., Samuels, M. R. and Eliassen, J. D.: Chemical Engineering Thermodynamics, 

Prentice Hall, New Jersey, 1972. 
8. Bartholomeusz, B. J.: The chemical potential at the surface of a non-hydrostatically stressed, 

defect-free solid, Philosophical Magazine A 71 (1995),489^195. 
9. Bear, J.: Dynamics of Fluid in Porous Media, Elsevier, Amsterdam, 1972. 

10. Beckermann, C. and Viskanta R.: Mathematical modeling of transport phenomena during alloy 
solidification, Appl. Mech. Rev. 46(1) (1993), 1-27. 

11. Bennethum, L. S.: Multiscale, hybrid mixture theory for swelling systems with interfaces, PhD 
Thesis, Purdue University, West Lafayette, Indiana, 1994. 

12. Bennethum, L. S. and Cushman, J. H.: Multiscale hybrid mixture theory for swelling systems 
-1: Balance laws. Int. J. Engng Sei. 34(2) (1996a), 125-145. 

13. Bennethum L. S. and Cushman, J. H.: Multiscale hybrid mixture theory for swelling systems - 
II. Constitutive Theory, Int. J. Engng Sei. 34(2) (1996b), 147-169 

14. Benethum, L. S., Murad, M. A. and Cushman, J. H.: Clarifying mixture theory and 
the macroscale chemical potential for porous media, Int. J. Engng Sei. 34(14) (1996), 
1611-1621. 

15. Biot, M.: General Theory of three-dimensional consolidation, J. Appl. Phys. 12 (1994), 155— 
164. 

16. Biot, M.: Theory of propagation of elastic waves in a fluid-saturated porous solid, J. Acoust. 
Soc. Amer. 28(2) (1956), 168-178. 

17. Biot M.: Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys. 
33(4) (1962), 1482-1498. 

18. Boure, J. A.: Two-phase, flow models: the closure issue, In: G. F. Hewitt, J. M. Delhaye and N. 
Zuber (eds), Multiphase Science and Technology, Vol. 3, Marcel Dekker, New York, 1987, pp. 
3-30. 

19. Bowen, R. M.: Theory of Mixtures, In: A. C. Eringen (ed.), Continuum Physics, Vol. 3, 
Academic Press, New York, 1976, pp. 2-127. 

20. Bowen, R. M.: Incompressible porous media models by use of the theory of mixtures, Int. J. 
Engng Sei. 18 (1980), 1129-1148. 

21. Bowen, R. M.: Compressible porous media models by use of the theory of mixtures, Int. J. 
Engng Sei. 20 (1982), 697-735. 

22. Bowen, R. M. and Wiese, J. C: Diffusion in mixtures of elastic bodies, Int. J. Engng Sei. 1, 
(1969), 689-735. 

23. Callen, H.: Thermodynamics and an Introduction to Thermostatics, Wiley, New York, 1985. 
24. Castellan, G.: Physical Chemistry, Addison-Wesley, Menlo Park, California, 1983. 
25. Coleman, B. D. and Noll, W: The thermodynamics of elastic materials with heat conduction 

and viscosity, Archive Rational Mech. Anal. 13 (1963), 167-178. 
26. Cushman, J.: Molecular-scale lubrication, Nature 347 (1990), 227-228. 



224 LYNN SCHREYER BENNETHUM ET AL. 

27. Cushman, J. H.: On unifying the concepts of scale, instrumentation and stochastics in the 
development of multiple phase transport theroy, Water Resour. Res. 20 (1984), 1668-1676. 

28. de Groot, S. R. and Mazure, P.: Nonequilibrium Thermodynamics. McGraw-Hill, New York, 
1962. 

29. Deemer, A. R. and Slattery, J. C: Balance equations and structural models for phase interfaces, 
Int. J. Multiphase Flow 4 (1978), 171-192. 

30. Derjaguin, B. V. and Churaev, N.: On the question of determining the concept of disjoining 
pressure and its role in the equilibrium and flow of thin films, J. Colloid Interface Sei. 66(3) 
(1978), 389-398. 

31. Derjaguin, B. V. and Churaey, N.: The current state of the theory of long-range surface forces, 
Colloids and Surfaces 41 (1989), 223-237. 

32. Derjaguin, B. V., Churaev, N. and Müller, V. M.: Surface Forces. Consultants Bureau, New 
York, 1987. 

33. Eringen, A. C: Mechanics ofContinua. John Wiley and Sons, New York, 1967. 
34. Fremond, M. and Nicolas, R: Macroscopic thermodynamics of porous media, Continuum 

Mechanics and Thermodynamics 2 (1990), 119-139. 
35. Gee, M. L., Mcguiggan, R M., Israelachvili, J. and Homola, A. M.: Liquid to solidlike 

transitions of molecularly thin films under shear, J. Chem. Phys. 93(3) (1990), 1895-1906. 
36. Goodman, M. A. and Cowin, S. C: A Continuum Theory for Granular Materials, Archive 

Rational Mech. Anal. 44 (1972), 249-266. 
37. Gray, W. G. and Hassanizadeh, S. M.: Unsaturated flow theory including inerfacial phenomena. 

Water Resour. Res. 27 (1991), 1855-1863. 
38. Grim, R. E.: (1968), Clay Mineralogy, McGraw-Hill, New York. 
39. Hassanizadeh, S. M.: 1986, Derivation of basic equations of mass transport in porous media, 

Part 2. Generalized Darcy's and Fick's Laws, Adv. Water Resour. 9,207-223. 
40. Hassanizadeh, S. M. and Gray, W. G.: General conservation equations for multiphase systems: 

1. Averaging procedure, Adv. Water Resour. 2 (1979a), 131-144. 
41. Hassanizadeh, S. M. and Gray, W. G.: General conservation equations for multiphase systems: 

2. Mass, momenta, energy, and entropy equations, Adv. Water Resour 2 (1979a), 191-208. 
42. Hassanizadeh, S. M. and Gray, W. G.: General conservation equations for multiphase systems: 

3: constitutive theory for porous media, Adv. Water Resour. 3 (1980), 25-40. 
43. Hassanizadeh, S. M. and Gray, W. G.: Mechanics and thermodynamics of multiphase flow in 

porous media including interphase boundaries, Adv. Water Resour. 13 (1990), 169-186. 
44. Hassanizadeh, S. M. and Gray, W. G.: Thermodynamics basics of capillary pressure in porous 

media, Water Resour. Res. 29 (10) (1993a), 3389-3405. 
45. Hassanizadeh, S. M. and Gray, W. G.: Toward an improved description of the physics of two 

phase flow, Adv. Water Resour. 16 (1993b), 53-67. 
46. Hueckel, T.: On effective stress concepts and deformation in clays subjected to environmental 

loads, Canad. Geotech. J. 29 (1992), 1120-1125. 
47. Israelachvili, J.: Intermodular and Surface Force, Academic Press, New York, 1991. 
48. Israelachvili, J., Mcguiggan, P. M. and Homola, A. M.: Dynamic properties of molecularly thin 

liquid films, Science 240 (1988), 189-191. 
49. Kralchevsky, P. A. and Ivanoy, I. B.: Micromechanical description of curved interfaces, thin 

films, and membranes - II: Film surface tensions, disjoining pressure and interfacial stress 
balances, J. Colloid Interface Sei. 137(1) (1990), 234-252. 

50. Kremer, G. M., Dai, L. and Marques J. W.: Thermodynamics of binary mixtures of molecular 
and noble gases, Contin. Mech. Thermodyn. 4 (1992), 37-57. 

51. Lambe, T. W.: A mechanistic picture of shear strength in clay, In: Research Conference on 
Shear Strength of Cohesive Soils, New York, 1960, pp. 503-532. 

52. Liu, I. S.: Method of Lagrange multipliers for exploitation of the entropy principle, Archive 
Rational Mech. Anal. 46 (1972), 131-148. 



MACROSCALE THERMODYNAMICS AND THE CHEMICAL POTENTIAL 225 

53. Liu, I. S. and Müller, I.: Extended thermodynamics of classical and degenerate gases, Archive 
Rational Mech. Anal. 83 (1983), 285-332. 

54. Low, P. E. Viscosity of interlayer water in montmorillonites, Soil Sei. Soc. Amer. J. 40 (1976), 

500-505. 
55. Low, P. E: Nature and properties of water in montmorillonite-water system, Soil Sei. Soc. 

America J. 43 (1979), 651-658. 
56. Low, P. E: The swelling of clay: II. Montmorillonite-water system, Soil Sei. Soc. America J. 

44(4) (1980), 667-676. 
57. Low, P. E: Structural component of the swelling pressure of clays, Langmuir 3 (1987), 18-25. 
58. Low] P. E: The clay/water interface and its role in the environment, In: Progress in Colloid & 

Polymer Science, Vol. 95, Steinkopff Verlat, 1994, pp. 98-107. 
59. Marie, C. M.: On macroscopic equations governing multiphase flow with diffusion and 

chemical reactions in porous media, Int. J. Engng Sei. 20 (1982), 643-662. 
60. Marsily, G.: 1986, Quantitative Hydrogeology: Groundwater Hydrology for Engineers, Aca- 

demic Press, London. 
61. McQuarrie, D. A.: 1977, Statistical Mechanics, Harper and Row, New York. 
62. Morgensten, N. M. and Balasubramonian B.: Effects of pore fluid on the swelling of clay- 

shale, In: D. Snethen (ed.), Proc. Fourth Int. Conf. on Expansive Soils, New York, NY, 1980, 

pp. 190-205. 
63. Müller, I. and Ruggeri, T.: 1993, Extended Thermodynamics, Springer-Verlag, New York. 
64. Murad! M. A., Bennethum, L. S. and Cushman, J. H.: A multiscale theory of swelling porous 

media: Application to one-dimensional consolidation, Transport in Porous Media 19 (1995), 

93-122. 
65. Murad, M. A. and Cushman, J. H.: Multiscale flow and deformation in hydrophilic swelling 

porous media, Int. J. of Engng Sei. 34(3) (1996), 313-336. 
66. Murad, M. A. and Cushman, J. H.: (1997), A multiscale theory of swelling porous media: 

II dual porosity models for consolidation of clays incorporating physico-chemical effects, 
Transport in Porous Media 28(1) (1997), 69-108. 

67. Passman, S. L., Nunziato, J. W. and Walsh, E. K.: 1984, A theory of multiphase mixtures, In: 
Truesdell (ed.), Rational Thermodynamics, Springer-Verlag, New York. 

68. Richards, J. I. and Youn, H. K.: 1990, Theory of Distributions: A Non-Technical Introduction, 
Cambridge Univ. Press, Cambridge. 

69. Rusanov, A. I.: 3. Thermodynamics of solid bulk phase: Anisotropy of chemical potential, 
Surface Science Reports 23 (6-8) (1996), 178-181. 

70. Schoen, M., Diestler, D. J. and Cushman, J. H.: Fluids in micropores. I. structure of a simple 
classical fluid in a slit-pore, J. ofChem. Phys. 87(9) (1987), 5464-5476. 

71. Schwartz, L.: 1950, Theorie des Distributions. Paris: Hermann et Cie. 
72. Slattery, J. C: Flow of viscoelastic fluids through porous media, AIChE 13 (1967), 1066-1071. 
13.   Sridharän, A. and Rao, G. V: Mechanisms controlling volume change of saturated clays and 

the role of the effective stress concept, Geotechique 23(3) (1973), 359-382. 
74. Terzaghi, K.: 1942, Theoretical Soil Mechanics, John Wiley and Sons, New York. 
75. Thomas, N. L. and Windle A. H.: A theory of case II diffusion, Polymer 23 (1982), 529-542. 
76. Truesdell, C. and Noll, W: 1965, The Non-Linear Field Theories ofMechnics. Handbuch del 

Physik HI/3, Springer-Verlag. 
77. Vardoulakis, I. and Aifantis, E. C: On the role of microstructure in the behavior of soils: Effects 

of higher order gradients and internal intertia, Mechanics of Materials 18 (1994), 151-158. 
78. Whitaker, S.: Diffusion and dispersion in porous media, AIChE 13 (1967), 420-438. 
79. Whitaker, S.: Advances in theory of fluid motion in porous media, Ind. Engng Chem. 61(12) 

(1969), 14-28. 
80. Zubarev, D. N.: 1974, Nonequilibrium Statistical Thermodynamics, Consultants Bureau, New 

York, pp. 321-322. 


